Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Phys Rev Lett ; 132(18): 186402, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759200

RESUMO

A gallium interstitial defect is thought to be responsible for the spectacular spin-dependent recombination in GaAs_{1-x}N_{x} dilute nitrides. Current understanding associates this defect with at least two in-gap levels corresponding to the (+/0) and (++/+) charge-state transitions. Using a spin-sensitive photoinduced current transient spectroscopy, the in-gap electronic structure of a x=0.021 alloy is revealed. The (+/0) state lies ≈0.27 eV below the conduction band edge, and an anomalous, negative activation energy reveals the presence of not one but two other in-gap states. The observations are consistent with a (++/+) state ≈0.19 eV above the valence band edge, and a (+++/++) state ≈25 meV above the valence band edge.

2.
Phys Rev Lett ; 132(14): 146902, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640398

RESUMO

Spin defects in silicon carbide are promising candidates for quantum sensing applications as they exhibit long coherence times even at room temperature. However, spin readout methods that rely on fluorescence detection can be challenging due to poor photon collection efficiency. Here, we demonstrate coherent spin control and all-electrical readout of a small ensemble of spins in a SiC junction diode using pulsed electrically detected magnetic resonance. A lock-in detection scheme based on a three stage modulation cycle is implemented, significantly enhancing the signal-to-noise ratio. This technique enabled observation of coherent spin dynamics, specifically Rabi spin nutation, spin dephasing, and spin decoherence. The use of these protocols for magnetometry applications is evaluated.

3.
Phys Rev Lett ; 132(6): 060603, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394595

RESUMO

A high-spin nucleus coupled to a color center can act as a long-lived memory qudit in a spin-photon interface. The germanium vacancy (GeV) in diamond has attracted recent attention due to its excellent spectral properties and provides access to the ten-dimensional Hilbert space of the I=9/2 ^{73}Ge nucleus. Here, we observe the ^{73}GeV hyperfine structure, perform nuclear spin readout, and optically initialize the ^{73}Ge spin into any eigenstate on a µs timescale and with a fidelity of up to ∼84%. Our results establish ^{73}GeV as an optically addressable high-spin quantum platform for a high-efficiency spin-photon interface as well as for foundational quantum physics and metrology.

4.
Nat Commun ; 12(1): 6543, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764304

RESUMO

The Moon presently has no dynamo, but magnetic fields have been detected over numerous portions of its crust. Most of these regions are located antipodal to large basins, leading to the hypothesis that lunar rock ejected during basin-forming impacts accumulated at the basin antipode and recorded the ambient magnetic field. However, a major problem with this hypothesis is that lunar materials have low iron content and cannot become strongly magnetized. Here we simulate oblique impacts of 100-km-diameter impactors at high resolution and show that an ~700 m thick deposit of potentially iron-rich impactor material accumulates at the basin antipode. The material is shock-heated above the Curie temperature and therefore may efficiently record the ambient magnetic field after deposition. These results explain a substantial fraction of the Moon's crustal magnetism, and are consistent with a dynamo field strength of at least several tens of microtesla during the basin-forming epoch.

5.
Appl Opt ; 60(12): 3380-3392, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33983243

RESUMO

The Ocean Color component of the global Aerosol Robotic Network (AERONET-OC) utilizes CE-318 sun photometers modified for above-water radiometry from fixed structures such as oil rigs, lighthouses, and service platforms. Primarily, AERONET-OC measurements allow determination of the water-leaving radiance required for the validation of ocean color satellite data products. One instrument from the AERONET-OC network, identified as AERONET #080, was studied in this work. A laser-illuminated integrating sphere of known radiance enabled determination of the linearity with flux and absolute radiance responsivity at multiple wavelengths within seven of the AERONET #080 filter bands. We compared the results to calibrations from the AERONET facility at the Goddard Space Flight Center of the National Aeronautics and Space Administration and from the Joint Research Centre of the European Commission. These results agree within the estimated mean comparison uncertainty of 1.88 % (k=2). We also assessed these results using calibrated lamp-illuminated integrating spheres and observed a spectral dependence to the comparison results that is unexplained.

6.
Nano Lett ; 19(7): 4543-4550, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150580

RESUMO

The precise measurement of mechanical stress at the nanoscale is of fundamental and technological importance. In principle, all six independent variables of the stress tensor, which describe the direction and magnitude of compression/tension and shear stress in a solid, can be exploited to tune or enhance the properties of materials and devices. However, existing techniques to probe the local stress are generally incapable of measuring the entire stress tensor. Here, we make use of an ensemble of atomic-sized in situ strain sensors in diamond (nitrogen-vacancy defects) to achieve spatial mapping of the full stress tensor, with a submicrometer spatial resolution and a sensitivity of the order of 1 MPa (10 MPa) for the shear (axial) stress components. To illustrate the effectiveness and versatility of the technique, we apply it to a broad range of experimental situations, including mapping the stress induced by localized implantation damage, nanoindents, and scratches. In addition, we observe surprisingly large stress contributions from functional electronic devices fabricated on the diamond and also demonstrate sensitivity to deformations of materials in contact with the diamond. Our technique could enable in situ measurements of the mechanical response of diamond nanostructures under various stimuli, with potential applications in strain engineering for diamond-based quantum technologies and in nanomechanical sensing for on-chip mass spectroscopy.

7.
Phys Rev Lett ; 122(10): 105701, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932683

RESUMO

The rhombohedral phase of Si (r8-Si), a promising semiconducting material, is formed by indentation together with the body-centered cubic phase (bc8-Si). Using a novel sample preparation method, x-ray diffraction is used to determine the relative volume of these phases in indented Si and allow observation of a distorted unit cell along the direction of indentation loading. Theoretical calculations together with these observations suggest the indent contains an intrinsic compression of ∼4 GPa that stabilizes the r8 phase.

8.
Opt Lett ; 43(24): 6077-6080, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548008

RESUMO

Direct femtosecond laser writing has been used to produce localized regions of photo-luminescent emission in 4H- and 6H-silicon carbide (SiC). Arrays of active color centers were fabricated by different pulse laser energies in the sites of square grids at various depths (from surface level to 10 µm below surface). We optically characterized the fabricated color centers using confocal imaging with 532 and 780 nm excitation, photo-luminescence spectroscopy, and lifetime decay at room temperature. We show that the technique can produce specifically the silicon vacancy color center emitting in the range 850-950 nm and other emitters in the 700 nm. This method can be adopted to engineer color centers in (SiC) at different depths in the material for single-photon generation, sensing, display fabrication, and light emitting diodes.

9.
Opt Lett ; 42(7): 1297-1300, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362753

RESUMO

Nanostructured and bulk silicon carbide (SiC) has recently emerged as a novel platform for quantum nanophotonics due to its harboring of paramagnetic color centers, having immediate applications as a single photon source and spin optical probes. Here, using ultra-short pulsed laser ablation, we fabricated from electron irradiated bulk 4H-SiC, 40-50 nm diameter SiC nanoparticles, fluorescent at 850-950 nm. This photoluminescence is attributed to the silicon vacancy color centers. We demonstrate that the original silicon vacancy color centers from the target sample were retained in the final nanoparticles solution, exhibiting excellent colloidal stability in water over several months. Our work is relevant for quantum nanophotonics, magnetic sensing, and biomedical imaging applications.


Assuntos
Compostos Inorgânicos de Carbono/química , Lasers , Microscopia de Fluorescência/métodos , Nanopartículas/química , Compostos de Silício/química , Cor
10.
Rep Prog Phys ; 80(3): 034502, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139468

RESUMO

This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

11.
Nat Commun ; 6: 7783, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26205309

RESUMO

Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.

12.
J Phys Condens Matter ; 27(15): 154204, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25783169

RESUMO

To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling.

13.
Nat Mater ; 13(2): 151-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24240243

RESUMO

Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×10(6) counts s(-1)) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

14.
J Perinatol ; 33(8): 631-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23412641

RESUMO

OBJECTIVE: To determine if children born prematurely exhibit atypical responses to normally occurring sensory stimuli, as measured by the Sensory Profile. STUDY DESIGN: This is a cross-sectional study of children born at 32 weeks gestation, followed at 1 to 8 years of age. The Sensory Profile questionnaire was completed by each child's primary caregiver. The overall Sensory Profile was considered atypical if any quadrant or section score was >2 s.d. from the mean of the Sensory Profile validation group. Bivariate analyses were performed to determine associations between risk factors for adverse neurodevelopment and overall atypical Sensory Profiles. A section or quadrant was considered atypical if its score was >2 s.d. from the mean. A test of proportions was used to compute observed versus expected scores for each section and quadrant (Sensory Profile scores were based on a normal distribution so one would expect approximately 95% of participants to score within 2 s.d. of the mean). RESULT: Of our 107 participants, 39% had an atypical score in at least one section or quadrant. No specific perinatal or neonatal risk factors were associated with atypical overall Sensory Profiles (P0.05 for all). Children born prematurely were at risk of having atypical scores in the auditory, tactile and vestibular processing sections, and in the four Sensory Profile quadrants (P<0.05). CONCLUSION: Children born prematurely exhibit atypical sensory behaviors on the Sensory Profile. Further investigation to understand the underlying neural mechanisms and to develop effective interventions are critical to support neurodevelopment for these children.


Assuntos
Recém-Nascido Prematuro/fisiologia , Transtornos de Sensação , Criança , Pré-Escolar , Estudos Transversais , Seguimentos , Humanos , Lactente , Transtornos de Sensação/diagnóstico
15.
Appl Opt ; 51(16): 3631-41, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22695603

RESUMO

An algorithm is presented that corrects a multichannel fiber-coupled spectrograph for stray or scattered light within the system. The efficacy of the algorithm is evaluated based on a series of validation measurements of sources with different spectral distributions. This is the first application of a scattered-light correction algorithm to a multichannel hyperspectral spectrograph. The algorithm, based on characterization measurements using a tunable laser system, can be extended to correct for finite point-spread response in imaging systems.

16.
Nature ; 485(7396): 75-7, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22535246

RESUMO

Impact craters are the most obvious indication of asteroid impacts, but craters on Earth are quickly obscured or destroyed by surface weathering and tectonic processes. Earth's impact history is inferred therefore either from estimates of the present-day impactor flux as determined by observations of near-Earth asteroids, or from the Moon's incomplete impact chronology. Asteroids hitting Earth typically vaporize a mass of target rock comparable to the projectile's mass. As this vapour expands in a large plume or fireball, it cools and condenses into molten droplets called spherules. For asteroids larger than about ten kilometres in diameter, these spherules are deposited in a global layer. Spherule layers preserved in the geologic record accordingly provide information about an impact even when the source crater cannot be found. Here we report estimates of the sizes and impact velocities of the asteroids that created global spherule layers. The impact chronology from these spherule layers reveals that the impactor flux was significantly higher 3.5 billion years ago than it is now. This conclusion is consistent with a gradual decline of the impactor flux after the Late Heavy Bombardment.

17.
J Res Natl Inst Stand Technol ; 116(2): 621-46, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-26989588

RESUMO

The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.

18.
Phys Rev Lett ; 105(21): 217403, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231353

RESUMO

We present direct imaging of the emission pattern of individual chromium-based single photon emitters in diamond and measure their quantum efficiency. By imaging the excited state transition dipole intensity distribution in the back focal plane of high numerical aperture objective, we determined its 3D orientation. Employing ion implantation techniques, the emitters were placed at various distances from the diamond-air interface. By comparing the decay rates from the single chromium emitters at different depths in the diamond crystal, we measured an average quantum efficiency of 28%.

19.
J Res Natl Inst Stand Technol ; 113(4): 187-203, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-27096120

RESUMO

There is a 5 W/m(2) (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.

20.
J Res Natl Inst Stand Technol ; 111(5): 401-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-27274942

RESUMO

A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiometric, photometric and colorimetric applications. In essence, the programmable spectral source is a radiometric platform for advanced instrument characterization and calibration that can also serve as a basis for algorithm testing and instrument comparison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...