Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L319-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21148793

RESUMO

During early postnatal alveolar formation, the lung tissue of rat pups undergoes a physiological remodeling involving apoptosis of distal lung cells. Exposure of neonatal rats to severe hyperoxia (≥95% O(2)) both arrests lung growth and results in increased lung cell apoptosis. In contrast, exposure to moderate hyperoxia (60% O(2)) for 14 days does not completely arrest lung cell proliferation and is associated with parenchymal thickening. On the basis of similarities in lung architecture observed following either exposure to 60% O(2), or pharmacological inhibition of physiological apoptosis, we hypothesized that exposure to 60% O(2) would result in an inhibition of physiological lung cell apoptosis. Consistent with this hypothesis, we observed that the parenchymal thickening induced by exposure to 60% O(2) was associated with decreased numbers of apoptotic cells, increased expressions of the antiapoptotic regulator Bcl-xL, and the putative antiapoptotic protein survivin, and decreased expressions of the proapoptotic cleaved caspases-3 and -7. In summary, exposure of the neonatal rat lung to moderate hyperoxia results in an inhibition of physiological apoptosis, which contributes to the parenchymal thickening observed in the resultant lung injury.


Assuntos
Apoptose/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ar , Animais , Animais Recém-Nascidos , Western Blotting , Caspase 3/metabolismo , Contagem de Células , Morte Celular/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/patologia , Ratos , Ratos Sprague-Dawley , Estaurosporina/farmacologia
2.
Pediatr Res ; 66(3): 260-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542903

RESUMO

IL-1 beta, a proinflammatory cytokine, may contribute to the development of the chronic neonatal lung injury, bronchopulmonary dysplasia. Chronic neonatal lung injury was induced in rats, by exposure to 60% O2 for 14 d from birth, to determine whether pulmonary IL-1 expression was up-regulated and, if so, whether a daily s.c. IL-1 receptor antagonist injections would be protective. Exposure to 60% O2 for 14 d caused pulmonary neutrophil and macrophage influx, increased tissue fraction and tyrosine nitration, reduced VEGF-A and angiopoietin-1 expression, and reduced small vessel (20-65 microm) and alveolar numbers. Lung IL-1 alpha and -1 beta contents were increased after a 4-d exposure to 60% O2. IL-1 receptor antagonist treatment attenuated the 60% O2-dependent neutrophil influx, the increased tissue fraction, and the reduced alveolar number. Treatment did not restore VEGF-A or angiopoietin-1 expression and only partially attenuated the reduced vessel number in 60% O2-exposed pups. It also caused a paradoxical increase in macrophage influx and a reduction in small vessels in air-exposed pups. We conclude that antagonism of IL-1-mediated effects can, in major part, protect against lung injury in a rat model of 60% O2-induced chronic neonatal lung injury.


Assuntos
Lesão Pulmonar/etiologia , Oxigênio/efeitos adversos , Receptores de Interleucina-1/metabolismo , Angiopoietina-1/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Tamanho do Órgão , Fagócitos/metabolismo , Ratos , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA