Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(20): 11251-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23030048

RESUMO

Effective collection of trace-level lanthanides and actinides is advantageous for recovery and recycling of valuable resources, environmental remediation, chemical separations, and in situ monitoring. Using isotopic tracers, we have evaluated a number of conventional and nanoporous sorbent materials for their ability to capture and remove selected lanthanides (Ce and Eu) and actinides (Th, Pa, U, and Np) from fresh and salt water systems. In general, the nanostructured materials demonstrated a higher level of performance and consistency. Nanoporous silica surface modified with 3,4-hydroxypyridinone provided excellent collection and consistency in both river water and seawater. The MnO(2) materials, in particular the high surface area small particle material, also demonstrated good performance. Other conventional sorbents typically performed at levels below the nanostructured sorbents and demonstrate a larger variability and matrix dependency.


Assuntos
Elementos da Série Actinoide/análise , Recuperação e Remediação Ambiental/métodos , Elementos da Série dos Lantanídeos/análise , Nanoestruturas/química , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Elementos da Série Actinoide/química , Adsorção , Elementos da Série dos Lantanídeos/química , Rios/química , Água do Mar/química , Poluentes Químicos da Água/química , Poluentes Radioativos da Água/química
2.
Anal Chim Acta ; 708(1-2): 52-60, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22093344

RESUMO

Chemically selective chemisorbents are needed to monitor natural and engineered waters for anthropogenic releases of stable and radioactive contaminants. Here, a number of individual and mixtures of chemisorbents were investigated for their ability to extract select fission and activation product elements from marine and coastal waters, including Co, Zr, Ru, Ag, Te, Sb, Ba, Cs, Ce, Eu, Pa, Np, and Th. Conventional manganese oxide and cyanoferrate sorbents, including commercially available Anfezh and potassium hexacyanocobalt(II) ferrate(II) (KCFC), were tested along with novel nano-structured surfaces (known as Self Assembled Monolayers on Mesoporous Supports or SAMMS) functionalized with a variety of moieties including thiol, diphosphonic acid (DiPhos-), methyl-3,4 hydroxypyridinone (HOPO-), and cyanoferrate. Extraction efficiencies were measured as a function of salinity, organic content, temperature, flow rate and sample size for both synthetic and natural fresh and saline waters under a range of environmentally relevant conditions. The effect of flow rate on extraction efficiency, from 1 to 70 mL min(-1), provided some insight on rate limitations of mechanisms affecting sorption processes. Optimized mixtures of sorbent-ligand chemistries afforded excellent retention of all target elements, except, Ba and Sb. Mixtures of tested chemisorbents, including MnO(2)/Anfezh and MnO(2)/KCFC/Thiol (1-3 mm)-SAMMS, extracted 8 of the 11 target elements studied to better than 80% efficiency, while a mixture of MnO(2)/Anfezh/Thiol (75-150 µm)-SAMMS mixture was able to extract 7 of the 11 target elements to better than 90%. Results generated here indicate that flow rate should be less of a consideration for experimental design if sampling from fresh water containing variable amounts of DOM, rather than collecting samples from salt water environments. Relative to the capability of any single type of chemisorbent tested, optimized mixtures of several sorbents are able to increase the number of elements that can be efficiently and simultaneously extracted from natural waters.


Assuntos
Água Doce/química , Água do Mar/química , Extração em Fase Sólida , Poluentes Radioativos da Água/química , Adsorção , Ferrocianetos/química , Compostos de Manganês/química , Metais/química , Metais/isolamento & purificação , Nanoestruturas/química , Óxidos/química , Porosidade , Radioisótopos/química , Radioisótopos/isolamento & purificação , Salinidade , Temperatura
3.
Appl Radiat Isot ; 69(1): 205-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20870414

RESUMO

Monitoring natural waters for the inadvertent release of radioactive fission products produced as a result of nuclear power generation downstream from these facilities is essential for maintaining water quality. To this end, we evaluated sorbents for simultaneous in-situ large volume extraction of radionuclides with both soft (e.g., Ag) and hard metal (e.g., Co, Zr, Nb, Ba, and Cs) or anionic (e.g., Ru, Te, Sb) character. In this study, we evaluated a number of conventional and novel nanoporous sorbents in both fresh and salt waters. In most cases, the nanoporous sorbents demonstrated enhanced retention of analytes. Salinity had significant effects upon sorbent performance and was most significant for hard cations, specifically Cs and Ba. The presence of natural organic matter had little effect on the ability of chemisorbents to extract target elements.


Assuntos
Monitoramento Ambiental/métodos , Radioisótopos/isolamento & purificação , Poluentes Radioativos da Água/química , Adsorção , Radioisótopos/análise , Rios , Contagem de Cintilação , Água do Mar
4.
Sci Total Environ ; 407(18): 5056-70, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19539980

RESUMO

The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta's sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 m deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500+/-500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 microg/g to a post-mining maximum of 5 microg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of (137)Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500+/-300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay.


Assuntos
Mercúrio/farmacocinética , Mineração , Poluentes Químicos da Água/farmacocinética , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...