Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702808

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Assuntos
Apoptose , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Rim , Monócitos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Sirolimo/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cocultura/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos
2.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798445

RESUMO

Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary: TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.

4.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398119

RESUMO

The yeast mating response uses a G-protein coupled receptor (GPCR), Ste2, to detect mating pheromone and initiate mating projection morphogenesis. The septin cytoskeleton plays a key role in the formation of the mating projection, forming structures at the base of the projection. Desensitization of the Gα, Gpa1, by the Regulator of G-protein Signaling (RGS), Sst2, is required for proper septin organization and morphogenesis. In cells where the Gα is hyperactive, septins are mislocalized to the site of polarity, and the cells are unable to track a pheromone gradient. We set out to identify the proteins that mediate Gα control of septins during the Saccharomyces cerevisiae mating response by making mutations to rescue septin localization in cells expressing the hyperactive Gα mutant gpa1G302S. We found that single deletions of the septin chaperone Gic1, the Cdc42 GAP Bem3, and the epsins Ent1 and Ent2 rescued the polar cap accumulation of septins in the hyperactive Gα. We created an agent-based model of vesicle trafficking that predicts how changes in endocytic cargo licensing alters localization of endocytosis that mirrors the septin localization we see experimentally. We hypothesized that hyperactive Gα may increase the rate of endocytosis of a pheromone responsive cargo, thereby altering where septins are localized. Both the GPCR and the Gα are known to be internalized by clathrin-mediated endocytosis during the pheromone response. Deletion of the GPCR C-terminus to block internalization partially rescued septin organization. However, deletion of the Gpa1 ubiquitination domain required for its endocytosis completely abrogated septin accumulation at the polarity site. Our data support a model where the location of endocytosis serves as a spatial mark for septin structure assembly and that desensitization of the Gα delays its endocytosis sufficiently that septins are placed peripheral to the site of Cdc42 polarity.

5.
ACS Pharmacol Transl Sci ; 6(1): 195-199, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654756

RESUMO

The second Transatlantic Early Career Investigator (ECI) G Protein-Coupled Receptor (GPCR) Symposium was an online scientific meeting geared at young GPCR investigators, with the primary goal of expanding opportunities for sharing research and networking among trainees in North America and Europe. Here, we discuss the format of our meeting, its impact, and the challenges and opportunities facing meetings like it in the future.

6.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985794

RESUMO

Yeast use the G-protein-coupled receptor signaling pathway to detect and track the mating pheromone. The G-protein-coupled receptor pathway is inhibited by the regulator of G-protein signaling (RGS) Sst2 which induces Gα GTPase activity and inactivation of downstream signaling. G-protein signaling activates the MAPK Fus3, which phosphorylates the RGS; however, the role of this modification is unknown. We found that pheromone-induced RGS phosphorylation peaks early; the phospho-state of RGS controls its localization and influences MAPK spatial distribution. Surprisingly, phosphorylation of the RGS promotes completion of cytokinesis before pheromone-induced growth. Completion of cytokinesis in the presence of pheromone is promoted by the kelch-repeat protein, Kel1 and antagonized by the formin Bni1. We found that RGS complexes with Kel1 and prefers the unphosphorylatable RGS mutant. We also found overexpression of unphosphorylatable RGS exacerbates cytokinetic defects, whereas they are rescued by overexpression of Kel1. These data lead us to a model where Kel1 promotes completion of cytokinesis before pheromone-induced polarity but is inhibited by unphosphorylated RGS binding.


Assuntos
Citocinese , Proteínas Quinases Ativadas por Mitógeno , Proteínas RGS , Proteínas de Saccharomyces cerevisiae , Citocinese/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase , Proteínas dos Microfilamentos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Feromônios/metabolismo , Fosforilação , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 14(9): e0221766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509546

RESUMO

The difficulty in obtaining as well as maintaining weight loss, together with the impairment of metabolic control in conditions like diabetes and cardiovascular disease, may represent pathological situations of inadequate neural communication between the brain and peripheral organs and tissues. Innervation of adipose tissues by peripheral nerves provides a means of communication between the master metabolic regulator in the brain (chiefly the hypothalamus), and energy-expending and energy-storing cells in the body (primarily adipocytes). Although chemical and surgical denervation studies have clearly demonstrated how crucial adipose tissue neural innervation is for maintaining proper metabolic health, we have uncovered that adipose tissue becomes neuropathic (ie: reduction in neurites) in various conditions of metabolic dysregulation. Here, utilizing both human and mouse adipose tissues, we present evidence of adipose tissue neuropathy, or loss of proper innervation, under pathophysiological conditions such as obesity, diabetes, and aging, all of which are concomitant with insult to the adipose organ as well as metabolic dysfunction. Neuropathy is indicated by loss of nerve fiber protein expression, reduction in synaptic markers, and lower neurotrophic factor expression in adipose tissue. Aging-related adipose neuropathy particularly results in loss of innervation around the tissue vasculature, which cannot be reversed by exercise. Together with indications of neuropathy in muscle and bone, these findings underscore that peripheral neuropathy is not restricted to classic tissues like the skin of distal extremities, and that loss of innervation to adipose may trigger or exacerbate metabolic diseases. In addition, we have demonstrated stimulation of adipose tissue neural plasticity with cold exposure, which may ameliorate adipose neuropathy and be a potential therapeutic option to re-innervate adipose and restore metabolic health.


Assuntos
Tecido Adiposo Branco/inervação , Envelhecimento/metabolismo , Diabetes Mellitus/metabolismo , Obesidade/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Gordura Subcutânea/inervação , Tecido Adiposo Branco/metabolismo , Animais , Índice de Massa Corporal , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal , Obesidade/complicações
8.
Biology (Basel) ; 8(1)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759876

RESUMO

Brown and white adipose tissues are essential for maintenance of proper energy balance and metabolic health. In order to function efficiently, these tissues require both endocrine and neural communication with the brain. Brown adipose tissue (BAT), as well as the inducible brown adipocytes that appear in white adipose tissue (WAT) after simulation, are thermogenic and energy expending. This uncoupling protein 1 (UCP1)-mediated process requires input from sympathetic nerves releasing norepinephrine. In addition to sympathetic noradrenergic signaling, adipose tissue contains sensory nerves that may be important for relaying fuel status to the brain. Chemical and surgical denervation studies of both WAT and BAT have clearly demonstrated the role of peripheral nerves in browning, thermogenesis, lipolysis, and adipogenesis. However, much is still unknown about which subtypes of nerves are present in BAT versus WAT, what nerve products are released from adipose nerves and how they act to mediate metabolic homeostasis, as well as which cell types in adipose are receiving synaptic input. Recent advances in whole-depot imaging and quantification of adipose nerve fibers, as well as other new research findings, have reinvigorated this field of research. This review summarizes the history of research into adipose innervation and brain⁻adipose communication, and also covers landmark and recent research on this topic to outline what we currently know and do not know about adipose tissue nerve supply and communication with the brain.

9.
J Nutr Biochem ; 64: 50-60, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30439568

RESUMO

Consumption of diets that differ in fat type and amount, and sequestration of various fatty acids to tissues and organs likely have effects on overall physiology and metabolic health. However, the contributions of dietary lipids to brain-adipose communication and adipose tissue function are poorly understood. We designed six custom diets that differed only in amount and type of dietary fat, with high or low levels of saturated fatty acids (SFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) or omega-3 (n-3) PUFA. Mice fed the n-3 PUFA diet for 16 weeks displayed a striking reduction in weight gain accompanied by smaller adipose depots and improved glucose sensitivity. Reduced body weight occurred despite lowered energy expenditure and no difference in food intake. Despite the apparent beneficial effects to whole body physiology, we have demonstrated for the first time that a peroxidized n-3-enriched diet led to lipotoxicity of white adipose tissue, as evidenced by increased fibrosis, lipofuscin, reduced anti-inflammatory markers and loss of proper nerve supply. While healthful, n-3 fats are prone to peroxidation, and we observed peroxidated lipid metabolites in the adipose tissue of mice on these diets. Furthermore, using a lipidomics approach, we have observed that brain, white adipose tissue and brown adipose tissue accumulate lipid metabolites differently. The brain remained mostly shielded from changes in dietary fat type and amount, but differences in adipose lipid metabolites across these six diets may have affected metabolic function and brain-adipose communication, as observed in this study.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/efeitos adversos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Encéfalo/metabolismo , Gorduras Insaturadas na Dieta/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Peróxidos/química , Distribuição Tecidual , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...