Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312856, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775656

RESUMO

Antiferroelectric ceramics, via the electric-field-induced antiferroelectric (AFE)-ferroelectric (FE) phase transitions, show great promise for high-energy-density capacitors. Yet, currently, only 70-80% energy release is found during a charge-discharge cycle. Here, for PbZrO3-based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape-memory alloys) to predict the reversibility of the AFE-FE transition by using density-functional theory to assess AFE/FE interfacial lattice-mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime. A good correlation of mismatch strain with electric hysteresis, hence, with energy efficiency of AFE capacitors is observed. Guided by theory, high-throughput material search is conducted and AFE compositions with a near-perfect charge-discharge energy efficiency (98.2%), i.e., near-zero hysteresis are discovered. And the fatigue life of the capacitor reaches 79.5 million charge-discharge cycles, a factor of 80 enhancement over AFE ceramics with large electric hysteresis.

2.
Phys Rev Lett ; 130(16): 166101, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154666

RESUMO

Interstitial electron density ρ_{o} is offered as a direct metric for maximum strength in metals, arising from universal properties derived from an electron gas. ρ_{o} sets the exchange-correlation parameter r_{s} in density-functional theory. It holds also for maximum shear strength τ_{max} in polycrystals [M. Chandross and N. Argibay, Phys. Rev. Lett. 124, 125501 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.125501]. Elastic moduli and τ_{max} for polycrystalline (amorphous) metals are linear with ρ_{o} and melting T_{m} (glass-transition T_{g}) temperature. ρ_{o} or r_{s}, even with rule-of-mixture estimate, predicts relative strength for rapid, reliable selection of high-strength alloys with ductility, as confirmed for elements to steels to complex solid solutions, and validated experimentally.

3.
Phys Rev Lett ; 127(11): 115704, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558953

RESUMO

High-entropy alloys and even medium-entropy alloys are an intriguing class of materials in that structure and property relations can be controlled via alloying and chemical disorder over wide ranges in the composition space. Employing density-functional theory combined with the coherent-potential approximation to average over all chemical configurations, we tune free energies between face-centered-cubic and hexagonal-close-packed phases in Fe_{x}Mn_{80-x}Co_{10}Cr_{10} systems. Within Fe-Mn-based alloys, we show that the martensitic transformation and chemical short-range order directly correlate with the face-centered-cubic and hexagonal-close-packed energy difference and stacking-fault energies, which are in quantitative agreement with recent observation of two phase region (face-centered cubic and hexagonal closed pack) in a polycrystalline high-entropy alloy sample at x=40 at.%. Our predictions are further confirmed by single-crystal measurements on a x=40 at.% using transmission-electron microscopy, selective-area diffraction, and electron-backscattered-diffraction mapping. The results herein offer an understanding of transformation-induced or twinning-induced plasticity in this class of high-entropy alloys and a design guide for controlling the physics at the electronic level.

4.
J Phys Chem C Nanomater Interfaces ; 125(31): 17008-17018, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34476039

RESUMO

High-entropy alloys (HEAs) have intriguing material properties, but their potential as catalysts has not been widely explored. Based on a concise theoretical model, we predict that the surface of a quaternary HEA of base metals, CoCrFeNi, should go from being nearly fully oxidized except for pure Ni sites when exposed to O2 to being partially oxidized in an acidic solution under cathodic bias, and that such a partially oxidized surface should be more active for the electrochemical hydrogen evolution reaction (HER) in acidic solutions than all the component metals. These predictions are confirmed by electrochemical and surface science experiments: the Ni in the HEA is found to be most resistant to oxidation, and when deployed in 0.5 M H2SO4, the HEA exhibits an overpotential of only 60 mV relative to Pt for the HER at a current density of 1 mA/cm2.

5.
Sci Rep ; 11(1): 17149, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433841

RESUMO

We identify compositionally complex alloys (CCAs) that offer exceptional mechanical properties for elevated temperature applications by employing machine learning (ML) in conjunction with rapid synthesis and testing of alloys for validation to accelerate alloy design. The advantages of this approach are scalability, rapidity, and reasonably accurate predictions. ML tools were implemented to predict Young's modulus of refractory-based CCAs by employing different ML models. Our results, in conjunction with experimental validation, suggest that average valence electron concentration, the difference in atomic radius, a geometrical parameter λ and melting temperature of the alloys are the key features that determine the Young's modulus of CCAs and refractory-based CCAs. The Gradient Boosting model provided the best predictive capabilities (mean absolute error of 6.15 GPa) among the models studied. Our approach integrates high-quality validation data from experiments, literature data for training machine-learning models, and feature selection based on physical insights. It opens a new avenue to optimize the desired materials property for different engineering applications.

6.
Nanoscale Adv ; 3(14): 4065-4071, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132842

RESUMO

A new family of heterostructured transition-metal dichalcogenides (TMDCs) with incommensurate ("misfit") spatial arrangements of well-defined layers was prepared from structurally dissimilar single-phase 2H-MoS2 and 1T-HfS2 materials. The experimentally observed heterostructuring is energetically favorable over the formation of homogeneous multi-principle element dichalcogenides observed in related dichalcogenide systems of Mo, W, and Ta. The resulting three-dimensional (3D) heterostructures show semiconducting behavior with an indirect band gap around 1 eV, agreeing with values predicted from density functional theory. Results of this joint experimental and theoretical study open new avenues for generating unexplored metal-dichalcogenide heteroassemblies with incommensurate structures and tunable physical properties.

7.
J Phys Condens Matter ; 33(15)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33296872

RESUMO

We present a systematic study of the effect of Pd-alloying on phase stability, electronic structure, and elastic properties in L10Fe-Ni using density-functional theory. Being from the same group of the periodic table, Pd is the best candidate for chemical alloying. The Fe-Ni/Fe-Pd/Ni-Pd bond-length increases with increasing Pd-concentration, which weakens the hybridization between low lying energy states below Fermi-level. The reduced hybridization decreases the relative thermodynamic stability of L10Fe(Ni1-xPdx) untilx= 0.75. Beyond this concentration, the relative stability gets enhanced, which is attributed to a unique change in the lattice distortion (c/a). The elastic properties show a non-monotonous behavior as a function ofx, which is again due to a specific change-over in the uniaxial strain. We found that Pd alloying increases the local Fe moment and structural anisotropy of L10FeNi, which are important for applications such as microwave absorption, refrigeration systems, recording devices, imaging and sensors. We believe that the present study for the chemical alloying effect can provide critical insights toward the understanding of electronic-structure and elastic behavior of other technologically important materials.

8.
Nat Comput Sci ; 1(1): 54-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217165

RESUMO

High-entropy alloys, with N elements and compositions {cν = 1,N} in competing crystal structures, have large design spaces for unique chemical and mechanical properties. Here, to enable computational design, we use a metaheuristic hybrid Cuckoo search (CS) to construct alloy configurational models on the fly that have targeted atomic site and pair probabilities on arbitrary crystal lattices, given by supercell random approximates (SCRAPs) with S sites. Our Hybrid CS permits efficient global solutions for large, discrete combinatorial optimization that scale linearly in a number of parallel processors, and linearly in sites S for SCRAPs. For example, a four-element, 128-site SCRAP is found in seconds-a more than 13,000-fold reduction over current strategies. Our method thus enables computational alloy design that is currently impractical. We qualify the models and showcase application to real alloys with targeted atomic short-range order. Being problem-agnostic, our Hybrid CS offers potential applications in diverse fields.

9.
Nat Commun ; 11(1): 3005, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532971

RESUMO

Three-dimensional heterostructures are usually created either by assembling two-dimensional building blocks into hierarchical architectures or using stepwise chemical processes that sequentially deposit individual monolayers. Both approaches suffer from a number of issues, including lack of suitable precursors, limited reproducibility, and poor scalability of the preparation protocols. Therefore, development of alternative methods that enable preparation of heterostructured materials is desired. We create heterostructures with incommensurate arrangements of well-defined building blocks using a synthetic approach that comprises mechanical disassembly and simultaneous reordering of layered transition-metal dichalcogenides, MX2, and non-layered monochalcogenides, REX, where M = Ta, Nb, RE = Sm, La, and X = S, Se. We show that the discovered solid-state processes are rooted in stochastic mechanochemical transformations directed by electronic interaction between chemically and structurally dissimilar solids toward atomic-scale ordering, and offer an alternative to conventional heterostructuring. Details of composition-structure-properties relationships in the studied materials are also highlighted.

10.
Chem Sci ; 11(19): 5007-5016, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34122957

RESUMO

How the crystal structures of ordered transition-metal phosphide catalysts affect the hydrogen-evolution reaction (HER) is investigated by measuring the anisotropic catalytic activities of selected crystallographic facets on large (mm-sized) single crystals of iron-phosphide (FeP) and monoclinic nickel-diphosphide (m-NiP2). We find that different crystallographic facets exhibit distinct HER activities, in contrast to a commonly held assumption of severe surface restructuring during catalytic activity. Moreover, density-functional-theory-based computational studies show that the observed facet activity correlates well with the H-binding energy to P atoms on specific surface terminations. Direction dependent catalytic properties of two different phosphides with different transition metals, crystal structures, and electronic properties (FeP is a metal, while m-NiP2 is a semiconductor) suggests that the anisotropy of catalytic properties is a common trend for HER phosphide catalysts. This realization opens an additional rational design for highly efficient HER phosphide catalysts, through the growth of nanocrystals with specific exposed facets. Furthermore, the agreement between theory and experimental trends indicates that screening using DFT methods can accelerate the identification of desirable facets, especially for ternary or multinary compounds. The large single-crystal nature of the phosphide electrodes with well-defined surfaces allows for determination of the catalytically important double-layer capacitance of a flat surface, C dl = 39(2) µF cm-2 for FeP, useful for an accurate calculation of the turnover frequency (TOF). X-ray photoelectron spectroscopy (XPS) studies of the catalytic crystals that were used show the formation of a thin oxide/phosphate overlayer, presumably ex situ due to air-exposure. This layer is easily removed for FeP, revealing a surface of pristine metal phosphide.

11.
J Phys Condens Matter ; 31(49): 495502, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341095

RESUMO

We report results from a fast, efficient, and first-principles full-potential Nth-order muffin-tin orbital (FP-NMTO) method combined with van Leeuwen-Baerends correction to local density exchange-correlation potential. We show that more complete and compact basis set is critical in improving the electronic and structural properties. We exemplify the self-consistent FP-NMTO calculations on group IV and III-V semiconductors. Notably, predicted bandgaps, lattice constants, and bulk moduli are in good agreement with experiments (e.g. we find for Ge 0.86 eV, 5.57 [Formula: see text], 75 GPa versus measured 0.74 eV, 5.66 [Formula: see text], 77.2 GPa). We also showcase its application to the electronic properties of 2-dimensional h-BN and h-SiC, again finding good agreement with experiments.

12.
Phys Rev Lett ; 122(7): 076401, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848606

RESUMO

The cerium hexaboride (CeB_{6}) f-electron compound displays a rich array of low-temperature magnetic phenomena, including a "magnetically hidden" order, identified as multipolar in origin via advanced x-ray scattering. From first-principles electronic-structure results, we find that the antiferroquadrupolar (AFQ) ordering in CeB_{6} arises from crystal-field splitting and yields a band structure in agreement with experiments. With interactions of p electrons between Ce and B_{6} being small, the electronic state of CeB_{6} is suitably described as Ce(4f^{1})^{3+}(e^{-})(B_{6})^{2-}. The AFQ state of orbital spins is caused by an exchange interaction induced through spin-orbit interaction, which also splits the J=5/2 state into a Γ_{8} ground state and a Γ_{7} excited state. Within the smallest antiferromagnetic (AFM) (111) configuration, an orbital-ordered AFQ state appears during charge self-consistency, and it supports the appearance of a "hidden" order. Hydrostatic pressure (either applied or chemically induced) stabilizes the AFM (AFQ) states over a ferromagnetic one, as observed at low temperatures.

13.
Phys Rev Lett ; 121(16): 165701, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387636

RESUMO

The density functional theory was employed to study the stress-strain behavior and elastic instabilities during the solid-solid phase transformation (PT) when subjected to a general stress tensor, as exemplified for semiconducting Si I and metallic Si II, where metallization precedes the PT, so stressed Si I can be a metal. The hydrostatic PT occurs at 76 GPa, while under uniaxial loading it is 11 GPa (3.7 GPa mean pressure), 21 times lower. The Si I→Si II PT is described by a critical value of the phase-field's modified transformation work, and the PT criterion has only two parameters given six independent stress elements. Our findings reveal novel, more practical synthesis routes for new or known high-pressure phases under predictable nonhydrostatic loading, where competition of instabilities can serve for phase selection rather than free energy minima used for equilibrium processing.

14.
J Phys Condens Matter ; 29(42): 424001, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28766508

RESUMO

This work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride ([Formula: see text] [Formula: see text]) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of [Formula: see text] [Formula: see text] polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to ∼10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.

15.
J Am Chem Soc ; 139(7): 2702-2709, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28112506

RESUMO

The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C-27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al2O3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. This work clearly demonstrates a surprising bimodal coordination of methionine at the Pd-Al2O3 interface.

16.
Sci Rep ; 6: 31028, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498807

RESUMO

Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi.

17.
ChemSusChem ; 9(17): 2358-64, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27535100

RESUMO

Alane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2 , indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 10(4)  bar expected from bulk thermodynamics.


Assuntos
Compostos de Alumínio/química , Alumínio/química , Técnicas de Química Sintética/métodos , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
18.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-27402923

RESUMO

Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by very small perturbations of the driving field(s).This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

19.
Phys Chem Chem Phys ; 17(42): 28103-11, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25766277

RESUMO

We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis.

20.
J Chem Phys ; 142(2): 024106, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591337

RESUMO

The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. However, improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but also guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP. In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA