Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 341: 199322, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228190

RESUMO

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidade
2.
Genomics ; 116(1): 110781, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182036

RESUMO

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Assuntos
Ciclídeos , Humanos , Animais , Ciclídeos/genética , Uganda , Aquicultura , Cruzamento , Variação Genética
3.
Sci Rep ; 13(1): 15513, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726411

RESUMO

To assess resolving-like activity by a novel chemically-modified curcumin (CMC2.24) in a "two-hit" model of diabetes-associated periodontitis. Macrophages from rats were cultured in the presence/absence of either Lipopolysaccharide (LPS, 1st hit); or advanced-glycation-end products (AGE, 2nd hit); or both combined. CMC2.24 was added as treatment. The conditioned media were analyzed for MMP-9, cytokines (IL-1ß, IL-6, TNF-α), resolvins (RvD1, RvE1, lipoxin A4), and soluble receptor for AGE (sRAGE). The phenotypes of M1/M2 macrophage were analyzed by flow cytometry. Both LPS/AGE-alone, and two-combined, dramatically increased the secretion of MMP-9 by macrophages. CMC2.24 "normalized" the elevated levels of MMP-9 under all conditions. Moreover, CMC2.24 significantly reduced the secretion of IL-1ß and IL-6 with a fewer effects on TNF-α. Importantly, CMC2.24 increased RvD1 and sRAGE secretion by macrophages exposed to LPS/AGE; and both treatment groups exhibited increased M2 relative to M1 populations. Furthermore, scatter-diagram showed the macrophages gradually shifted from M1 towards M2 with CMC2.24-treated, whereas LPS/AGE-alone groups remained unchanged. CMC2.24 "normalized" cytokines and MMP-9, but also enhanced RvD1 and sRAGE in macrophages. Crucially, CMC2.24 appears to be a potent inhibitor of the pro-inflammatory M1 phenotype; and a promotor of the pro-resolving M2 phenotype, thus acting like a crucial "switch" to reduce inflammation.


Assuntos
Curcumina , Animais , Ratos , Curcumina/farmacologia , Metaloproteinase 9 da Matriz , Interleucina-6 , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Inflamação/tratamento farmacológico , Citocinas , Macrófagos
4.
J Inflamm Res ; 16: 779-792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860795

RESUMO

Purpose: CMC2.24, a novel 4-(phenylaminocarbonyl)-chemically-modified-curcumin, is a pleiotropic MMP-Inhibitor of various inflammatory/collagenolytic diseases including periodontitis. This compound has demonstrated efficacy in host modulation therapy along with improved resolution of inflammation in various study models. The objective of current study is to determine the efficacy of CMC2.24 in reducing the severity of diabetes, and its long-term role as an MMP-inhibitor, in a rat model. Methods: Twenty-one adult male Sprague-Dawley rats were randomly distributed into three groups: Normal (N), Diabetic (D) and Diabetic+CMC2.24 (D+2.24). All three groups were orally administered vehicle: carboxymethylcellulose alone (N, D), or CMC2.24 (D+2.24; 30mg/kg/day). Blood was collected at 2-months and 4-months' time-point. At completion, gingival tissue and peritoneal washes were collected/analyzed, and jaws examined for alveolar bone loss by micro-CT. Additionally, sodium hypochlorite(NaClO)-activation of human-recombinant (rh) MMP-9 and its inhibition by treatment with 10µM CMC2.24, Doxycycline, and Curcumin were evaluated. Results: CMC2.24 significantly reduced the levels of lower-molecular-weight active-MMP-9 in plasma. Similar trend of reduced active-MMP-9 was also observed in cell-free peritoneal and pooled gingival extracts. Thus, treatment substantially decreased conversion of pro- to actively destructive proteinase. Normalization of the pro-inflammatory cytokine (IL-1ß, resolvin-RvD1), and diabetes-induced osteoporosis was observed in presence of CMCM2.24. CMC2.24 also exhibited significant anti-oxidant activity by inhibiting the activation of MMP-9 to a lower-molecular-weight (82kDa) pathologically active form. All these systemic and local effects were observed in the absence of reduction in severity of hyperglycemia. Conclusion: CMC2.24 reduced activation of pathologic active-MMP-9, normalized diabetic osteoporosis, and promoted resolution of inflammation but had no effect on the hyperglycemia in diabetic rats. This study also highlights the role of MMP-9 as an early/sensitive biomarker in the absence of change in any other biochemical parameter. CMC2.24 also inhibited significant activation of pro-MMP-9 by NaOCl (oxidant) adding to known mechanisms by which this compound treats collagenolytic/inflammatory diseases including periodontitis.

5.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743905

RESUMO

In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.

6.
J Exp Pharmacol ; 14: 73-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173493

RESUMO

PURPOSE: CMC 2.24, a chemically modified curcumin, was developed as a novel, pleiotropic MMP-inhibitor to treat various inflammatory/collagenolytic diseases including periodontitis. To date, this compound has shown efficacy in vitro, in cell culture, and in vivo (oral administration) in mice, rats and dogs. In preparation for possible Phase I human clinical trials, the current study describes the maximum-tolerated-dose (MTD), pharmacokinetics (PK), and toxicology of CMC 2.24 in the rat model. METHODS: For the MTD study, 30 Sprague-Dawley rats were randomly distributed into 5 groups (3M/3F per group): Placebo (vehicle; carboxymethylcellulose) and CMC 2.24 at various doses (50, 100, 500, 1000 mg/kg/day), were administered once daily by oral gavage for 5 days. For the PK study, 24 rats were administered either Placebo or CMC 2.24 (100mg/kg/day) once daily for 28 days or only once (500 or 1000 mg/kg). Analysis of this test compound was done using LC/MS/MS for PK evaluation on blood samples drawn from rats at multiple time points. The animals were sacrificed after 5 or 28 days of treatment, and blood chemistry and serology were analyzed. Major organs (heart, lung, liver, kidney, spleen, intestine, brain) were histologically examined at necropsy. RESULTS: Orally administered, CMC 2.24 did not produce significant changes in body weight, food consumption or adverse events in the MTD and toxicology studies. Moreover, no obvious pathologic changes were observed based on histology, hematology, serum biochemistry, or necropsy compared to placebo-treated controls. The PK study demonstrated a peak-blood concentration (Cmax) at 45 mins after oral administration of 2.24 and a serum half-life of 10 hours. CONCLUSION: In conclusion, CMC 2.24, orally administered to rats once a day, appears to be safe and effective at a wide range of doses, consistent with efficacy previously demonstrated in studies on animal models of various collagenolytic diseases, such as periodontitis, diabetes and cancer.

7.
J Inflamm Res ; 14: 5337-5347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703272

RESUMO

PURPOSE: Clinically, it is challenging to manage diabetic patients with periodontitis. Biochemically, both involve a wide range of inflammatory/collagenolytic conditions which exacerbate each other in a "bi-directional manner." However, standard treatments for this type of periodontitis rely on reducing the bacterial burden and less on controlling hyper-inflammation/excessive-collagenolysis. Thus, there is a crucial need for new therapeutic strategies to modulate this excessive host response and to promote enhanced resolution of inflammation. The aim of the current study is to evaluate the impact of a novel chemically-modified curcumin 2.24 (CMC2.24) on host inflammatory response in diabetic rats. METHODS: Type I diabetes was induced by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC2.24, or the vehicle-alone, was administered by oral gavage daily for 3 weeks to the diabetics. Micro-CT was used to analyze morphometric changes and quantify bone loss. MMPs were analyzed by gelatin zymography. Cell function was examined by cell migration assay, and cytokines and resolvins were measured by ELISA. RESULTS: In this severe inflammatory disease model, administration of the pleiotropic CMC2.24 was found to normalize the excessive accumulation and impaired chemotactic activity of macrophages in peritoneal exudates, significantly decrease MMP-9 and pro-inflammatory cytokines to near normal levels, and markedly increase resolvin D1 (RvD1) levels in the thioglycolate-elicited peritoneal exudates (tPE). Similar effects on MMPs and RvD1 were observed in the non-elicited resident peritoneal washes (rPW). Regarding clinical relevance, CMC2.24 significantly inhibited the loss of alveolar bone height, volume and mineral density (ie, diabetes-induced periodontitis and osteoporosis). CONCLUSION: In conclusion, treating hyperglycemic diabetic rats with CMC2.24 (a tri-ketonic phenylaminocarbonyl curcumin) promotes the resolution of local and systemic inflammation, reduces bone loss, in addition to suppressing collagenolytic MMPs and pro-inflammatory cytokines, suggesting a novel therapeutic strategy for treating periodontitis complicated by other chronic diseases.

8.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946371

RESUMO

Skin hyperpigmentation disorders arise due to excessive production of the macromolecular pigment melanin catalyzed by the enzyme tyrosinase. Recently, the therapeutic use of curcumin for inhibiting tyrosinase activity and production of melanin have been recognized, but poor stability and solubility have limited its use, which has inspired synthesis of curcumin analogs. Here, we investigated four novel chemically modified curcumin (CMC) derivatives (CMC2.14, CMC2.5, CMC2.23 and CMC2.24) and compared them to the parent compound curcumin (PC) for inhibition of in vitro tyrosinase activity using two substrates for monophenolase and diphenolase activities of the enzyme and for diminution of cellular melanogenesis. Enzyme kinetics were analyzed using Lineweaver-Burk and Dixon plots and nonlinear curve-fitting to determine the mechanism for tyrosinase inhibition. Copper chelating activity, using pyrocatechol violet dye indicator assay, and antioxidant activity, using a DPPH radical scavenging assay, were also conducted. Next, the capacity of these derivatives to inhibit tyrosinase-catalyzed melanogenesis was studied in B16F10 mouse melanoma cells and the mechanisms of inhibition were elucidated. Inhibition mechanisms were studied by measuring intracellular tyrosinase activity, cell-free and intracellular α-glucosidase enzyme activity, and effects on MITF protein level and cAMP maturation factor. Our results showed that CMC2.24 showed the greatest efficacy as a tyrosinase inhibitor of all the CMCs and was better than PC as well as a popular tyrosinase inhibitor-kojic acid. Both CMC2.24 and CMC2.23 inhibited tyrosinase enzyme activity by a mixed mode of inhibition with a predominant competitive mode. In addition, CMC2.24 as well as CMC2.23 showed a comparable robust efficacy in inhibiting melanogenesis in cultured melanocytes. Furthermore, after removal of CMC2.24 or CMC2.23 from the medium, we could demonstrate a partial recovery of the suppressed intracellular tyrosinase activity in the melanocytes. Our results provide a proof-of-principle for the novel use of the CMCs that shows them to be far superior to the parent compound, curcumin, for skin depigmentation.


Assuntos
Curcumina/análogos & derivados , Curcumina/farmacologia , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Melanoma/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , AMP Cíclico/metabolismo , Cinética , Melanócitos/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/efeitos dos fármacos , Fator de Transcrição Associado à Microftalmia/metabolismo , Oxirredução/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo
9.
DNA Repair (Amst) ; 100: 103052, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607474

RESUMO

DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.


Assuntos
Benzo(a)pireno/metabolismo , Domínio Catalítico , Adutos de DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos
10.
J Exp Pharmacol ; 12: 47-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104105

RESUMO

PURPOSE: To determine the effect of a pleiotropic MMP-inhibitor, a novel chemically-modified curcumin 2.24 (CMC2.24), on the clinical and biological measures of naturally-occurring periodontitis in the beagle dog. METHODS: Eight adult female dogs with generalized periodontitis were distributed into two groups: Placebo and Treatment (n=4/group). After a 1-hr full-mouth scaling and root planing (SRP) at time 0, placebo or CMC2.24 (10mg/kg) capsules were orally administered once/day for 3 months. Various clinical periodontal parameters (e.g., pocket depth, gingival index) were measured at different time periods (0, 1, 2 and 3 months), and gingival crevicular fluid (GCF) samples and gingival tissue biopsies (3-month) were analyzed for cytokines, MMPs and cell-signaling molecules. Standardized radiographs were taken at 0 and 3-month; in addition, peripheral blood monocytes/macrophages from these dogs at 3-month were cultured and analyzed for the pro-, activated-, and total-forms of both MMP-2 and MMP-9. RESULTS: CMC2.24 treatment significantly reduced gingival inflammation (gingival index, GCF flow), pocket depth (PD), and the numbers of pockets (PD≥4mm), compared to placebo. CMC2.24 also significantly reduced MMP-9 and MMP-2 (primarily in the activated-form) in gingival tissue, alveolar bone loss, and reduced GCF IL-1ß. Cell-signaling molecules, TLR-2 (but not TLR-4) and p38 MAPK, responded to CMC2.24 in a pattern consistent with reductions in inflammation and collagenolysis. In culture, CMC2.24 had no effect on pro-MMP-9 but essentially completely blocked the conversion of pro- to activated-MMP-9 in systemic blood-derived monocytes/macrophages from these dogs. CONCLUSION: In the beagle dog model of natural periodontitis, orally administered CMC2.24 (a novel triketonic phenylaminocarbonyl-curcumin) significantly decreased clinical measures of periodontitis as well as pro-inflammatory cytokines, MMPs, and cell-signaling molecules. These and previous studies, using other in vitro and in vivo models, support the clinical potential of CMC2.24 as a novel adjunct to SRP in the treatment of chronic periodontitis.

11.
Environ Mol Mutagen ; 60(9): 792-806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31374128

RESUMO

Aristolochic acids (AAs) are human nephrotoxins and carcinogens found in concoctions of Aristolochia plants used in traditional medicinal practices worldwide. Genotoxicity of AAs is associated with the formation of active species catalyzed by metabolic enzymes, the full repertoire of which is unknown. Recently, we provided evidence that sulfonation is important for bioactivation of AAs. Here, we employ Salmonella typhimurium umu tester strains expressing human N-acetyltransferases (NATs) and sulfotransferases (SULTs), to study the role of conjugation reactions in the genotoxicities of N-hydroxyaristolactams (AL-I-NOH and AL-II-NOH), metabolites of AA-I and AA-II. Both N-hydroxyaristolactams show stronger genotoxic effects in umu strains expressing human NAT1 and NAT2, than in the parent strain. Additionally, AL-I-NOH displays increased genotoxicity in strains expressing human SULT1A1 and SULT1A2, whereas AL-II-NOH shows enhanced genotoxicity in SULT1A1/2 and SULT1A3 strains. 2,6-Dichloro-4-nitrophenol, SULTs inhibitor, reduced umuC gene expression induced by N-hydroxyaristolactams in SULT1A2 strain. N-hydroxyaristolactams are also mutagenic in parent strains, suggesting that an additional mechanism(s) may contribute to their genotoxicities. Accordingly, using putative SULT substrates and inhibitors, we found that cytosols obtained from human kidney HK-2 cells activate N-hydroxyaristolactams in aristolactam-DNA adducts with the limited involvement of SULTs. Removal of low-molecular-weight reactants in the 3.5-10 kDa range inhibits the formation of aristolactam-DNA by 500-fold, which could not be prevented by the addition of cofactors for SULTs and NATs. In conclusion, our results demonstrate that the genotoxicities of N-hydroxyaristolactams depend on the cell type and involve not only sulfonation but also N,O-acetyltransfer and an additional yet unknown mechanism(s). Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/toxicidade , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Arilsulfotransferase/metabolismo , Carcinógenos/toxicidade , Linhagem Celular , DNA/efeitos dos fármacos , Adutos de DNA/genética , Humanos , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Sulfotransferases/metabolismo
12.
Arch Toxicol ; 93(7): 1893-1902, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203411

RESUMO

Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1-10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1-1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.


Assuntos
2-Naftilamina/metabolismo , Compostos de Aminobifenil/metabolismo , Carbolinas/metabolismo , Carcinógenos/metabolismo , 2-Naftilamina/toxicidade , Compostos de Aminobifenil/toxicidade , Carbolinas/toxicidade , Carcinógenos/toxicidade , Linhagem Celular , Cromatografia Líquida , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Humanos , Espectrometria de Massas , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo
13.
J Exp Pharmacol ; 11: 1-14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774454

RESUMO

INTRODUCTION: Dental microbial biofilm initiates gingival inflammation, and its suppression is the current dominant strategy for treating periodontitis. However, the host response to the biofilm is largely responsible for the connective tissue breakdown including alveolar bone loss, which is mediated by proinflammatory cytokines and matrix metalloproteinases (MMPs). METHODS: The current study compared the efficacy of a novel host-modulation compound, a chemically modified curcumin (CMC 2.24), to that of its parent compound (natural curcumin), in both lipopolysaccharide (LPS) (a bacterial endotoxin)-induced cell culture and in vivo models of periodontitis. RESULTS: In cell culture, both CMC 2.24 and curcumin appeared similarly effective in suppressing LPS-induced cytokine (IL-1ß and TNF-α) secretion by mononuclear inflammatory cells; however, CMC 2.24 significantly reduced MMP-9 secretion by 78% (P<0.05) whereas curcumin was ineffective. In vivo, CMC 2.24 administration was more effective than curcumin in suppressing (a) IL-1ß in gingival tissue and (b) MMP-9 in both gingiva and plasma, the latter indicating a reduced severity of systemic inflammation. The difference in primary clinical outcome between the two treatments was that CMC 2.24 reduced the pathologically excessive alveolar bone loss, assessed morphometrically at multiple sites, by 80%-90% (P<0.01), whereas curcumin, surprisingly, either increased (P<0.05) or had no effect on alveolar bone loss at these sites. CONCLUSION: These data, plus that from previous studies, support the therapeutic potential of CMC 2.24 in the management of inflammatory periodontal disease and its ability to reduce the risk of associated systemic diseases. The current study also indicates that the MMP-9 inhibitor efficacy is associated with the ability of CMC 2.24 (but not curcumin) to inhibit alveolar bone loss in this rat model of periodontitis.

14.
J Periodontol ; 90(5): 535-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30394523

RESUMO

BACKGROUND: CMC2.24, a novel tri-ketonic chemically modified compound based on natural di-ketonic curcumin, has been shown to reduce bone loss and inflammatory mediators in experimental periodontitis, however, a potential dose-response relationship was not determined. The purpose of this study was to assess the effects of different doses of CMC2.24 on inflammation and bone resorption in vivo and also to describe on the effects of CMC2.24 on macrophage response. METHODS: CMC2.24 was administered daily to animals for 28 days by oral gavage, at the following doses: 0 (control), 1, 3, 10, and 30 mg/kg of body weight. Experimental periodontitis was induced by injections of lipopolysaccharide (LPS) into the gingival tissues. Outcomes assessed were bone resorption, detection of tartrate-resistant acid phosphatase, and determination of gene expression. In vitro, macrophages (RAW264.7) were treated with different concentrations of CMC2.24: 1, 3, 10, and 30 µM and then subjected to different activation stimuli. Gene expression, phagocytic activity, production of reactive oxygen species (ROS) and cytokine production were evaluated. RESULTS: CMC2.24 inhibited bone resorption, osteoclastogenesis, and tumor necrosis factor (TNF)-α expression in vivo. These beneficial responses reached maximum levels at a dose of 1 mg/kg, i.e. no dose-dependent effect. In vitro, CMC2.24 reduced the production of TNF-α and interleukin-10, inhibited phagocytic activity and stimulated production of ROS. A dose-dependent effect was observed only for ROS production. CONCLUSION: Low doses of CMC2.24 (1 mg/kg/day) administered orally were sufficient to significantly inhibit alveolar bone resorption associated with the experimental periodontal disease; whereas in vitro macrophage inflammatory gene expression and phagocytosis were reduced, whereas production of ROS was stimulated.


Assuntos
Perda do Osso Alveolar , Curcumina , Periodontite , Animais , Gengiva , Inflamação , Lipopolissacarídeos , Osteoclastos , Fator de Necrose Tumoral alfa
15.
Chem Res Toxicol ; 31(12): 1382-1397, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30387604

RESUMO

Epidemiological studies have linked aromatic amines (AAs) from tobacco smoke and some occupational exposures with bladder cancer risk. Several epidemiological studies have also reported a plausible role for structurally related heterocyclic aromatic amines present in tobacco smoke or formed in cooked meats with bladder cancer risk. DNA adduct formation is an initial biochemical event in bladder carcinogenesis. We examined paired fresh-frozen (FR) and formalin-fixed paraffin-embedded (FFPE) nontumor bladder tissues from 41 bladder cancer patients for DNA adducts of 4-aminobiphenyl (4-ABP), a bladder carcinogen present in tobacco smoke, and 2-amino-9 H-pyrido[2,3- b]indole, 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine and 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline, possible human carcinogens, which occur in tobacco smoke and cooked meats. These chemicals are present in urine of tobacco smokers or omnivores. Targeted DNA adduct measurements were done by ultra-performance liquid chromatography-electrospray ionization multistage hybrid Orbitrap MS. N-(2'-Deoxyguanosin-8-yl)-4-ABP ( N-(dG-C8)-4-ABP) was the sole adduct detected in FR and FFPE bladder tissues. Twelve subjects (29%) had N-(dG-C8)-4-ABP levels above the limit of quantification, ranging from 1.4 to 33.8 adducts per 109 nucleotides (nt). DNA adducts of other human AA bladder carcinogens, including 2-naphthylamine (2-NA), 2-methylaniline (2-MA), 2,6-dimethylaniline (2,6-DMA), and lipid peroxidation (LPO) adducts, were screened for in bladder tissue, by our untargeted data-independent adductomics method, termed wide-selected ion monitoring (wide-SIM)/MS2. Wide-SIM/MS2 successfully detected N-(dG-C8)-4-ABP, N-(2'-deoxyadenosin-8-yl)-4-ABP and the presumed hydrazo linked adduct, N-(2'-deoxyguanosin- N2-yl)-4-ABP, and several LPO adducts in bladder DNA. Wide-SIM/MS2 detected multiple DNA adducts of 2-NA, 2-MA, and, 2,6-DMA, when calf thymus DNA was modified with reactive intermediates of these carcinogens. However, these AA-adducts were below the limit of detection in unspiked human bladder DNA (<1 adduct per 108 nt). Wide-SIM/MS2 can screen for many types of DNA adducts formed with exogenous and endogenous electrophiles and will be employed to identify DNA adducts of other chemicals that may contribute to the etiology of bladder cancer.


Assuntos
Aminas/química , Carcinógenos/química , Cromatografia Líquida de Alta Pressão/métodos , Adutos de DNA/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Bexiga Urinária/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Compostos de Aminobifenil/química , DNA/química , Feminino , Humanos , Limite de Detecção , Masculino , Carne/análise , Pessoa de Meia-Idade , Fumaça/análise , Nicotiana/química , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/química , Neoplasias da Bexiga Urinária/patologia
16.
Sci Data ; 5: 180186, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30226483

RESUMO

The two datasets outlined in this paper contain information related to (a) the local impacts of biofuel feedstock production, and (b) the factors that influence the adoption and/or sustained use of ethanol stoves in southern Africa. The first dataset was generated through extensive household surveys around four operational jatropha and sugarcane production sites in Malawi, Mozambique, and Swaziland. This project aimed to examine the local impacts of the most prominent modes of existing or intended biofuel feedstock production in southern Africa. The resulting dataset contains information about impacts on rural livelihoods, ecosystem services, food security and poverty alleviation. The second dataset is the outcome of research into factors that influence the adoption and sustained use of ethanol stoves. This dataset was collected through a household survey in Maputo city where the only large-scale ethanol stove dissemination programme in Africa has been implemented.


Assuntos
Biocombustíveis , Produção Agrícola , África Austral , Etanol , Características da Família
17.
J Magn Reson ; 295: 72-79, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144687

RESUMO

Test disk electrodes were fabricated from carbon nanotubes (CNT) using the Carbon Nanotube Templated Microfabrication (CNT-M) technique. The CNT-M process uses patterned growth of carbon nanotube forests from surfaces to form complex patterns, enabling electrode sizing and shaping. The additional carbon infiltration process stabilizes these structures for further processing and handling. At a macroscopic scale, the electrochemical, electrical and magnetic properties, and magnetic resonance imaging (MRI) characteristics of the disk electrodes were investigated; their microstructure was also assessed. CNT disk electrodes showed electrical resistivity around 1â€¯Ω·cm, charge storage capacity between 3.4 and 38.4 mC/cm2, low electrochemical impedance and magnetic susceptibility of -5.9 to -8.1 ppm, closely matched to that of tissue (∼-9 ppm). Phantom MR imaging experiments showed almost no distortion caused by these electrodes compared with Cu and Pt-Ir reference electrodes, indicating the potential for significant improvement in accurate tip visualization.

18.
Arch Oral Biol ; 91: 42-50, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29669267

RESUMO

OBJECTIVE: The purpose of this study was to compare the effects of the oral administration of natural curcumin and a chemically modified curcumin (CMC2.24) on osteoclast-mediated bone resorption, apoptosis, and inflammation in a murine model of experimental periodontal disease. DESIGN: Fifty male rats were distributed among the following treatment groups: (i) 2% carboxymethylcellulose, (ii) CMC2.24 30 mg/kg body weight, (iii) Curcumin 100 mg/kg body weight and (iv) no treatment. Compounds were administered daily by oral intubation over a 15-day period of time. Periodontal disease was induced by injections of LPS (lipopolysaccharide) into the gingival tissues three times per week. Contralateral sides were injected with the same volume of PBS (phosphate buffered saline) vehicle. After 15 days, hemimaxillae and gingival tissues were harvested. Bone resorption was assessed by µCT (microcomputer tomography). Formalin-fixed, paraffin embedded histological sections were stained with haematoxylin/eosin (H/E) for the assessment of cellular infiltrate or subjected to immunohistochemistry for detecting TRAP (tartrate-resistant acid phosphatase)-positive cells and caspase-3. Apoptosis was assessed in the gingival tissues by DNA fragmentation. RESULTS: CMC2.24 and curcumin caused a significant reduction of the inflammatory cell infiltrate, however µCT analysis showed that only CMC2.24 reduced bone resorption and the number of TRAP-positive multinucleated cells (osteoclasts). Curcumin, but not CMC2.24, significantly reduced the number of apoptotic cells in the gingival tissues and of osteocytes in the alveolar bone crest. CONCLUSIONS: The results suggest that CMC2.24 and curcumin inhibit inflammation by different mechanisms, but only CMC2.24 was capable of reducing alveolar bone resorption in the LPS-induced model of periodontitis.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Curcumina/análogos & derivados , Curcumina/farmacologia , Inflamação/tratamento farmacológico , Periodontite/tratamento farmacológico , Administração Oral , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Carboximetilcelulose Sódica/farmacologia , Caspase 3/metabolismo , Curcumina/administração & dosagem , Modelos Animais de Doenças , Gengiva/diagnóstico por imagem , Gengiva/efeitos dos fármacos , Gengiva/patologia , Imuno-Histoquímica , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Masculino , Osteoclastos/efeitos dos fármacos , Periodontite/induzido quimicamente , Periodontite/patologia , Ratos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo , Tomografia
19.
Mol Carcinog ; 57(9): 1130-1143, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683208

RESUMO

Pancreatic Cancer (PC) is a deadly disease in need of new therapeutic options. We recently developed a novel tricarbonylmethane agent (CMC2.24) as a therapeutic agent for PC, and evaluated its efficacy in preclinical models of PC. CMC2.24 inhibited the growth of various human PC cell lines in a concentration and time-dependent manner. Normal human pancreatic epithelial cells were resistant to CMC2.24, indicating selectivity. CMC2.24 reduced the growth of subcutaneous and orthotopic PC xenografts in mice by up to 65% (P < 0.02), and the growth of a human patient-derived tumor xenograft by 47.5% (P < 0.03 vs vehicle control). Mechanistically, CMC2.24 inhibited the Ras-RAF-MEK-ERK pathway. Based on Ras Pull-Down Assays, CMC2.24 inhibited Ras-GTP, the active form of Ras, in MIA PaCa-2 cells and in pancreatic acinar explants isolated from Kras mutant mice, by 90.3% and 89.1%, respectively (P < 0.01, for both). The inhibition of active Ras led to an inhibition of c-RAF, MEK, and ERK phosphorylation by 93%, 91%, and 87%, respectively (P < 0.02, for all) in PC xenografts. Furthermore, c-RAF overexpression partially rescued MIA PaCa-2 cells from the cell growth inhibition by CMC2.24. In addition, downstream of ERK, CMC2.24 inhibited STAT3 phosphorylation levels at the serine 727 residue, enhanced the levels of superoxide anion in mitochondria, and induced intrinsic apoptosis as shown by the release of cytochrome c from the mitochondria to the cytosol and the further cleavage of caspase 9 in PC cells. In conclusion, CMC2.24, a potential Ras inhibitor, is an efficacious agent for PC treatment in preclinical models, deserving further evaluation.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
20.
Ind Biotechnol (New Rochelle N Y) ; 13(6): 289-291, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282380
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...