Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MRS Commun ; 12(6): 1160-1167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311275

RESUMO

The near real-time detection of airborne particles-of-interest is needed for avoiding current/future threats. The incorporation of imprinted particles into a micelle-based electrochemical cell produced a signal when brought into contact with particle analytes (such as SARS-COV-2), previously imprinted onto the structure. Nanoamp scales of signals were generated from what may've been individual virus-micelle interactions. The system showed selectivity when tested against similar size and morphology particles. The technology was compatible with airborne aerosol sampling techniques. Overall, the application of imprinted micelle technology could provide near real-time detection methods to a host of possible analytes of interest in the field. Supplementary Information: The online version contains supplementary material available at 10.1557/s43579-022-00242-0.

2.
J Phys Chem B ; 115(36): 10573-85, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21819111

RESUMO

In this paper we have prepared a new series of oligothiophenes capped with hexyl groups and a variety of strong acceptors, mainly cyanovinyl moieties. An exhaustive analysis of the absorption, photophysical, electrochemical, solid state, nonlinear optical and vibrational properties has been presented guided by theoretical calculations. The investigation is centered on the efficiency of the intramolecular charge transfer (i.e., chain length and acceptor dependence) and its impact on all the relevant electronic, structural, optical, and vibrational properties. The most significant features imparted by the acceptors through the π-conjugated oligothiophene path are (i) intense visible electronic absorptions, (ii) tuned fluorescence wavelength emissions, (iii) solid state π-stacking, (iv) ambipolar redox behavior, (v) S(1) ⇝ S(0) internal conversion as being the major route for the deactivation of the excited state, and (vi) large electronic and vibrational contributions to their nonlinear optical response (hyperpolarizability). The analysis establishes connections between the different properties of the materials and structure-function relationships useful in organic electronics.

3.
Chemistry ; 16(23): 6866-76, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20437430

RESUMO

We have prepared a new series of mixed thiophene-pyrrole oligomers to investigate the electronic benefits arising from the combination of these two heterocycles. The oligomers are functionalized with several hexyl and aryl groups to improve both processability and chemical robustness. An analysis of their spectroscopic (absorption and emission), photophysical, electrochemical, solid state, and vibrational properties is performed in combination with quantum-chemical calculations. This analysis provides relevant information regarding the use of these materials as organic semiconductors. The balance between the high aromatic character of pyrrole and the moderate aromaticity of thiophene allows us to address the impact of the coupling of these heterocycles in conjugated systems. The data are interpreted on the basis of the aromaticity, molecular conformations, ground and excited electronic state structures, frontier orbital topologies and energies, oxidative states, and quinoidal versus aromatic competition.

4.
Chemistry ; 12(21): 5458-70, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16628759

RESUMO

A series of tricyanovinyl (TCV)-substituted oligothiophenes was synthesized and investigated with a number of physical methods including UV/Vis, IR, and Raman spectroscopy, nonlinear optical (NLO) measurements, X-ray diffraction, and cyclic voltammetry. Mono- or disubstituted oligomers were prepared by the reaction of tetracyanoethylene with mono- or dilithiated oligomers. The comparative effects of the symmetric and asymmetric substitutions in the electronic and molecular properties have been addressed. These oligomers display dramatic reductions in both their optical and electrochemical band gaps in comparison with unsubstituted molecules. The analysis of the electronic properties of the molecules was assisted by density functional theory calculations, which are in excellent agreement with the experimental data. TCV substitution influences the energies of the frontier orbitals, especially with respect to the stabilization of LUMO orbitals. X-ray structural characterization of a monosubstituted oligomer exhibits pi-stacking with favorable intermolecular interactions. NLO results agree with the role of the intramolecular charge-transfer feature in the asymmetric samples. These results furthermore exalt the role of conformational flexibility in the disubstituted compounds and reveal an unexpected nonlinear optical activity for symmetric molecules. Regarding the electronic structure, the interpretation of the vibrational data reflects the balanced interplay between aromatic and quinoid forms, finely tuned by the chain length and substitution pattern. The electronic and structural properties are consistent with the semiconducting properties exhibited by these materials in thin film transistors (TFTs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA