Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PMC Biophys ; 2: 11, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20025729

RESUMO

Ca(2+ )binding proteins are essential for regulating the role of Ca(2+ )in cell signaling and maintaining Ca(2+ )homeostasis. Negatively charged residues such as Asp and Glu are often found in Ca(2+ )binding proteins and are known to influence Ca(2+ )binding affinity and protein stability. In this paper, we report a systematic investigation of the role of local charge number and type of coordination residues in Ca(2+ )binding and protein stability using de novo designed Ca(2+ )binding proteins. The approach of de novo design was chosen to avoid the complications of cooperative binding and Ca(2+)-induced conformational change associated with natural proteins. We show that when the number of negatively charged coordination residues increased from 2 to 5 in a relatively restricted Ca(2+)-binding site, Ca(2+ )binding affinities increased by more than 3 orders of magnitude and metal selectivity for trivalent Ln(3+ )over divalent Ca(2+ )increased by more than 100-fold. Additionally, the thermal transition temperatures of the apo forms of the designed proteins decreased due to charge repulsion at the Ca(2+ )binding pocket. The thermal stability of the proteins was regained upon Ca(2+ )and Ln(3+ )binding to the designed Ca(2+ )binding pocket. We therefore observe a striking tradeoff between Ca(2+)/Ln(3+ )affinity and protein stability when the net charge of the coordination residues is varied. Our study has strong implications for understanding and predicting Ca(2+)-conferred thermal stabilization of natural Ca(2+ )binding proteins as well as for designing novel metalloproteins with tunable Ca(2+ )and Ln(3+ )binding affinity and selectivity.PACS codes: 05.10.-a.

2.
Biochemistry ; 45(18): 5848-56, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16669627

RESUMO

Ca2+ controls biological processes by interacting with proteins with different affinities, which are largely influenced by the electrostatic interaction from the local negatively charged ligand residues in the coordination sphere. We have developed a general strategy for rationally designing stable Ca2+- and Ln3+-binding proteins that retain the native folding of the host protein. Domain 1 of cluster differentiation 2 (CD2) is the host for the two designed proteins in this study. We investigate the effect of local charge on Ca2+-binding affinity based on the folding properties and metal-binding affinities of the two proteins that have similarly located Ca2+-binding sites with two shared ligand positions. While mutation and Ca2+ binding do not alter the native structure of the protein, Ca2+ binding specifically induced changes around the designed Ca2+-binding site. The designed protein with a -5 charge at the binding sphere displays a 14-, 20-, and 12-fold increase in the binding affinity for Ca2+, Tb3+, and La3+, respectively, compared to the designed protein with a -3 charge, which suggests that higher local charges are preferred for both Ca2+ and Ln3+ binding. The localized charged residues significantly decrease the thermal stability of the designed protein with a -5 charge, which has a T(m) of 41 degrees C. Wild-type CD2 has a T(m) of 61 degrees C, which is similar to the designed protein with a -3 charge. This decrease is partially restored by Ca2+ binding. The effect on the protein stability is modulated by the environment and the secondary structure locations of the charged mutations. Our study demonstrates the capability and power of protein design in unveiling key determinants to Ca2+-binding affinity without the complexities of the global conformational changes, cooperativity, and multibinding process found in most natural Ca2+-binding proteins.


Assuntos
Cálcio/metabolismo , Proteínas/metabolismo , Dicroísmo Circular , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...