Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535655

RESUMO

In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5).

2.
Membranes (Basel) ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36837650

RESUMO

Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of 'non-spherical' silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.

3.
Membranes (Basel) ; 11(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832097

RESUMO

In this study, granulated activated charcoal (GAC) and bio charcoal (BC) is used as a filler in P3 biosand bag filter to study their filtration performance against a range of fluoride impurities from 1-1400 mg/L. A set of experiments are done to analyze the filtration efficiency of the sandbag filter against fluoride impurities after incorporating different amounts (e.g., 0.2, 2 kg) and a combination of GAC and BC. A combination of filler GAC and BC (1 kg each) have exhibited excellent results with 100% fluoride removal efficiency against 5 mg/L fluoride impurities for an entire experimental time of 165 min. It is because of the synergetic effect of adsorption caused by the high surface area (739 m2/g) of GAC and hydroxyapatite groups in BC. The data from remediation experiments using individual GAC and BC are fitted into the Langmuir and Freundlich Isotherm Models to check their adsorption mechanism and determine GAC and BC's maximum adsorption capacity (Qm). The remediation data for both GAC and BC have shown the better fitting to the Langmuir Isotherm Model with a high R2 value of 0.994 and 0.970, respectively, showing the excellent conformity with monolayer adsorption. While the GAC and BC have presented negative Kf values of -1.08 and -0.72, respectively, for Freundlich Model, showing the non-conformity to multilayer adsorption. The Qm values obtained from Langmuir Model for GAC is 6.23 mg/g, and for BC, it is 9.13 mg/g. The pH study on adsorption efficiency of individual GAC and BC against 5 mg/L of fluoride impurities indicates the decrease in removal efficiency with an increase in pH from 3 to 9. For example, BC has shown removal efficiency of 99.8% at pH 3 and 99.5% at pH 9, while GAC has exhibited removal efficiency of 96.1% at pH 3 and 95.9% at pH 9. Importantly, this study presents the significance of the synergetic application of GAC and BC in the filters, where GAC and BC are different in their origin, functionalities, and surface characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...