Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Hematol ; 30(4): 117-123, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37254854

RESUMO

PURPOSE OF REVIEW: Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS: GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY: As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.


Assuntos
Deficiência de GATA2 , Humanos , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Imunidade Inata , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , Animais
2.
iScience ; 26(4): 106297, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950124

RESUMO

Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.

3.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809258

RESUMO

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Assuntos
Deficiência de GATA2 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Deficiência de GATA2/genética , Interleucina-6/genética , Hematopoese/genética , Expressão Gênica , Dedos de Zinco/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
4.
Blood Adv ; 7(4): 586-601, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36161469

RESUMO

The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro. To determine if this mechanism operates in vivo, we used the hematopoietic-specific Vav1-Cre and "conditional by inversion" mouse system to ablate Exosc3, encoding an EC structural subunit. Although Exosc3C/C Cre+ embryos developed normally until embryonic day 14.5, Exosc3 ablation was embryonic lethal and severely reduced erythromyeloid progenitor activity. RNA sequencing analysis of Exosc3-ablated burst-forming unit-erythroid revealed elevated transcripts encoding multiple proapoptotic factors, and the mutant erythroid progenitors exhibited increased apoptosis. We propose that the EC controls an ensemble of apoptosis-regulatory RNAs, thereby promoting erythroid progenitor survival and developmental erythropoiesis in vivo.


Assuntos
Células Precursoras Eritroides , Exossomos , Camundongos , Animais , Complexo Multienzimático de Ribonucleases do Exossomo , Apoptose , RNA
5.
Blood Adv ; 6(5): 1464-1473, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35008108

RESUMO

Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.


Assuntos
Deficiência de GATA2 , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Hematopoese/genética , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo
6.
Blood Adv ; 6(4): 1095-1099, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516632

RESUMO

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has an essential role in regulating adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Assuntos
Hematopoese , Mesonefro , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mamíferos
7.
Sci Adv ; 7(50): eabk3521, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890222

RESUMO

Human genetic variants are classified on the basis of potential pathogenicity to guide clinical decisions. However, mechanistic uncertainties often preclude definitive categorization. Germline coding and enhancer variants within the hematopoietic regulator GATA2 create a bone marrow failure and leukemia predisposition. The conserved murine enhancer promotes hematopoietic stem cell (HSC) genesis, and a single-nucleotide human variant in an Ets motif attenuates chemotherapy-induced hematopoietic regeneration. We describe "conditionally pathogenic" (CP) enhancer motif variants that differentially affect hematopoietic development and regeneration. The Ets motif variant functioned autonomously in hematopoietic cells to disrupt hematopoiesis. Because an epigenetically silenced normal allele can exacerbate phenotypes of a pathogenic heterozygous variant, we engineered a bone marrow failure model harboring the Ets motif variant and a severe enhancer mutation on the second allele. Despite normal developmental hematopoiesis, regeneration in response to chemotherapy, inflammation, and a therapeutic HSC mobilizer was compromised. The CP paradigm informs mechanisms underlying phenotypic plasticity and clinical genetics.

8.
Nucleic Acids Res ; 49(22): e127, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34581807

RESUMO

Single-cell transcriptome sequencing (scRNA-seq) enabled investigations of cellular heterogeneity at exceedingly higher resolutions. Identification of novel cell types or transient developmental stages across multiple experimental conditions is one of its key applications. Linear and non-linear dimensionality reduction for data integration became a foundational tool in inference from scRNA-seq data. We present multilayer graph clustering (MLG) as an integrative approach for combining multiple dimensionality reduction of multi-condition scRNA-seq data. MLG generates a multilayer shared nearest neighbor cell graph with higher signal-to-noise ratio and outperforms current best practices in terms of clustering accuracy across large-scale benchmarking experiments. Application of MLG to a wide variety of datasets from multiple conditions highlights how MLG boosts signal-to-noise ratio for fine-grained sub-population identification. MLG is widely applicable to settings with single cell data integration via dimension reduction.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Análise por Conglomerados , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
10.
J Exp Med ; 217(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32736380

RESUMO

Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell fate-promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage differentiation potential. Deletion of the murine Gata2-77 enhancer, with a human equivalent that causes leukemia, downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes, basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the enhancer instigates a fate-promoting mechanism while abrogating an innate immunity-linked, fate-suppressing mechanism. During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and functionality.


Assuntos
Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Deleção de Genes , Mutação em Linhagem Germinativa , Células-Tronco/fisiologia , Adolescente , Adulto , Animais , Basófilos/fisiologia , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Eritrócitos/fisiologia , Feminino , Hematopoese/genética , Humanos , Macrófagos/fisiologia , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Célula Única
11.
Blood Adv ; 3(13): 2045-2056, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289032

RESUMO

Intensive scrutiny of human genomes has unveiled considerable genetic variation in coding and noncoding regions. In cancers, including those of the hematopoietic system, genomic instability amplifies the complexity and functional consequences of variation. Although elucidating how variation impacts the protein-coding sequence is highly tractable, deciphering the functional consequences of variation in noncoding regions (genome reading), including potential transcriptional-regulatory sequences, remains challenging. A crux of this problem is the sheer abundance of gene-regulatory sequence motifs (cis elements) mediating protein-DNA interactions that are intermixed in the genome with thousands of look-alike sequences lacking the capacity to mediate functional interactions with proteins in vivo. Furthermore, transcriptional enhancers harbor clustered cis elements, and how altering a single cis element within a cluster impacts enhancer function is unpredictable. Strategies to discover functional enhancers have been innovated, and human genetics can provide vital clues to achieve this goal. Germline or acquired mutations in functionally critical (essential) enhancers, for example at the GATA2 locus encoding a master regulator of hematopoiesis, have been linked to human pathologies. Given the human interindividual genetic variation and complex genetic landscapes of hematologic malignancies, enhancer corruption, creation, and expropriation by new genes may not be exceedingly rare mechanisms underlying disease predisposition and etiology. Paradigms arising from dissecting essential enhancer mechanisms can guide genome-reading strategies to advance fundamental knowledge and precision medicine applications. In this review, we provide our perspective of general principles governing the function of blood disease-linked enhancers and GATA2-centric mechanisms.


Assuntos
Suscetibilidade a Doenças , Elementos Facilitadores Genéticos , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Hematopoese/genética , Animais , Células Sanguíneas/metabolismo , Doenças Hematológicas/patologia , Humanos , Modelos Biológicos , Especificidade de Órgãos/genética , Transcriptoma
12.
J Clin Invest ; 129(3): 1180-1192, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620726

RESUMO

The development and function of stem and progenitor cells that produce blood cells are vital in physiology. GATA-binding protein 2 (GATA2) mutations cause GATA-2 deficiency syndrome involving immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA-2 physiological activities necessitate that it be strictly regulated, and cell type-specific enhancers fulfill this role. The +9.5 intronic enhancer harbors multiple conserved cis-elements, and germline mutations of these cis-elements are pathogenic in humans. Since mechanisms underlying how GATA2 enhancer disease mutations impact hematopoiesis and pathology are unclear, we generated mouse models of the enhancer mutations. While a multi-motif mutant was embryonically lethal, a single-nucleotide Ets motif mutant was viable, and steady-state hematopoiesis was normal. However, the Ets motif mutation abrogated stem/progenitor cell regeneration following stress. These results reveal a new mechanism in human genetics, in which a disease predisposition mutation inactivates enhancer regenerative activity, while sparing developmental activity. Mutational sensitization to stress that instigates hematopoietic failure constitutes a paradigm for GATA-2 deficiency syndrome and other contexts of GATA-2-dependent pathogenesis.


Assuntos
Elementos Facilitadores Genéticos , Deficiência de GATA2 , Fator de Transcrição GATA2 , Mutação em Linhagem Germinativa , Hematopoese/genética , Motivos de Nucleotídeos , Regeneração/genética , Animais , Deficiência de GATA2/genética , Deficiência de GATA2/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Humanos , Camundongos , Camundongos Mutantes
13.
Proc Natl Acad Sci U S A ; 115(43): E10109-E10118, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301799

RESUMO

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.


Assuntos
Fator de Transcrição GATA2/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Hematopoese/genética , Humanos , Camundongos , Síndromes Mielodisplásicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Células-Tronco/metabolismo , Dedos de Zinco/genética
14.
Development ; 145(1)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321181

RESUMO

Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.


Assuntos
Diferenciação Celular/fisiologia , Eritrócitos/metabolismo , Eritropoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Regeneração/fisiologia , Animais , Transporte Biológico Ativo/fisiologia , Eritrócitos/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Oxigênio/metabolismo
15.
Cell Rep ; 20(12): 2966-2979, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930689

RESUMO

Hematopoietic development requires the transcription factor GATA-2, and GATA-2 mutations cause diverse pathologies, including leukemia. GATA-2-regulated enhancers increase Gata2 expression in hematopoietic stem/progenitor cells and control hematopoiesis. The +9.5-kb enhancer activates transcription in endothelium and hematopoietic stem cells (HSCs), and its deletion abrogates HSC generation. The -77-kb enhancer activates transcription in myeloid progenitors, and its deletion impairs differentiation. Since +9.5-/- embryos are HSC deficient, it was unclear whether the +9.5 functions in progenitors or if GATA-2 expression in progenitors solely requires -77. We further dissected the mechanisms using -77;+9.5 compound heterozygous (CH) mice. The embryonic lethal CH mutation depleted megakaryocyte-erythrocyte progenitors (MEPs). While the +9.5 suffices for HSC generation, the -77 and +9.5 must reside on one allele to induce MEPs. The -77 generated burst-forming unit-erythroid through the induction of GATA-1 and other GATA-2 targets. The enhancer circuits controlled signaling pathways that orchestrate a GATA factor-dependent blood development program.


Assuntos
Células Sanguíneas/metabolismo , Elementos Facilitadores Genéticos , Hematopoese/genética , Animais , Diferenciação Celular/genética , Embrião de Mamíferos/metabolismo , Epistasia Genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Feto/metabolismo , Fator de Transcrição GATA2/genética , Fígado/embriologia , Fígado/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Transdução de Sinais , Transcriptoma/genética
16.
Blood ; 130(Suppl_1): 7, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31940664

RESUMO

DISCLOSURES: No relevant conflicts of interest to declare.

17.
Blood ; 129(3): 358-370, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27815262

RESUMO

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Assuntos
Transformação Celular Neoplásica/genética , GTP Fosfo-Hidrolases/genética , Leucemia Mieloide Aguda/patologia , Células Progenitoras de Megacariócitos e Eritrócitos/patologia , Proteínas de Membrana/genética , Proteína Supressora de Tumor p53/genética , Animais , Transplante de Medula Óssea , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência
18.
Stem Cell Reports ; 6(3): 368-82, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26905203

RESUMO

Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5(-/-) AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis.


Assuntos
Fator de Transcrição GATA2/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Peixe-Zebra
19.
Sci Adv ; 1(8): e1500503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601269

RESUMO

Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (-77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples -77 function from proto-oncogene deregulation. The -77(-/-) mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The -77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5(-/-) embryos, hematopoietic stem cell genesis was unaffected in -77(-/-) embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes.

20.
Mol Cell ; 59(1): 62-74, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26073540

RESUMO

Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology.


Assuntos
Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem Celular , Camundongos , Dados de Sequência Molecular , Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...