Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Med Phys ; 51(5): 3165-3172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588484

RESUMO

BACKGROUND: Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review. PURPOSE: The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios. METHODS: A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow. RESULTS: Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution. CONCLUSIONS: The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Física Médica/educação , Humanos , Erros Médicos/prevenção & controle
2.
Med Phys ; 49(1): 15-22, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34780068

RESUMO

PURPOSE: The purpose of this study was to develop and preliminarily test a radiotherapy system for patient posture correction and alignment using mixed reality (MixR) visualization. The write-up of this work also provides an opportunity to introduce the concepts and technology of MixR for a medical physics audience who may be unfamiliar with the topic. METHODS: A MixR application was developed for on optical-see-through head-mounted display (HoloLens 2) allowing a user to simultaneously and directly view a patient and a reference hologram derived from their simulation CT scan. The hologram provides a visual reference for the exact posture needed during treatment and is initialized in relation to the origin of a radiotherapy device using marker-based tracking. The system further provides marker-less tracking that allows the user tofreely navigate the room as they view and align the patient from various angles. The system was preliminarily tested using both a rigid (pelvis) and nonrigid (female mannequin) anthropomorphic phantom. Each phantom was aligned via hologram and accuracy quantified using CBCT and CT. RESULTS: A fully realized system was developed. Rigid registration accuracy was on the order of 3.0 ± 1.5 mm based on the performance of three users repeating alignment five times each. The lateral direction showed the most variability among users and was associated with the largest off-sets (approximately 2.0 mm). For nonrigid alignment, the MixR setup outperformed a setup based on three-point alignment and setup photos, the latter of which showed a difference in arm position of 2 cm and a torso roll of 6-7°. CONCLUSIONS: MixR visualization is a rapidly emerging domain that has the potential to significantly impact the field of medicine. The current application is an illustration of this and highlights the advantages of MixR for patient setup in radiation oncology. The key feature of the system is the way in which it transforms nonrigid registration into rigid registration by providing an efficient, portable, and cost-effective mechanism for reproducing patient posture without the use of ionizing radiation. Preliminary estimates of registration accuracy indicate clinical viability and form the foundation for further development and clinical testing.


Assuntos
Realidade Aumentada , Abdome , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas , Postura
3.
Front Oncol ; 11: 611469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490075

RESUMO

BACKGROUND: Although there are some controversies regarding whole pelvic radiation therapy (WPRT) due to its gastrointestinal and hematologic toxicities, it is considered for patients with gynecological, rectal, and prostate cancer. To effectively spare organs-at-risk (OAR) doses using multi-leaf collimator (MLC)'s optimal segments, potential dosimetric benefits in volumetric modulated arc therapy (VMAT) using a half-beam technique (HF) were investigated for WPRT. METHODS: While the size of a fully opened field (FF) was decided to entirely include a planning target volume in all beam's eye view across arc angles, the HF was designed to use half the FF from the isocenter for dose optimization. The left or the right half of the FF was alternatively opened in VMAT-HF using a pair of arcs rotating clockwise and counterclockwise. Dosimetric benefits of VMAT-HF, presented with dose conformity, homogeneity, and dose-volume parameters in terms of modulation complex score, were compared to VMAT optimized using the FF (VMAT-FF). Consequent normal tissue complication probability (NTCP) by reducing the irradiated volumes was evaluated as well as dose-volume parameters with statistical analysis for OAR. Moreover, beam-on time and MLC position precision were analyzed with log files to assess plan deliverability and clinical applicability of VMAT-HF as compared to VMAT-FF. RESULTS: While VMAT-HF used 60%-70% less intensity modulation complexity than VMAT-FF, it showed superior dose conformity. The small intestine and colon in VMAT-HF showed a noticeable reduction in the irradiated volumes of up to 35% and 15%, respectively, at an intermediate dose of 20-45 Gy. The small intestine showed statistically significant dose sparing at the volumes that received a dose from 15 to 45 Gy. Such a dose reduction for the small intestine and colon in VMAT-HF presented a significant NTCP reduction from that in VMAT-FF. Without sacrificing the beam delivery efficiency, VMAT-HF achieved effective OAR dose reduction in dose-volume histograms. CONCLUSIONS: VMAT-HF led to deliver conformal doses with effective gastrointestinal-OAR dose sparing despite using less modulation complexity. The dose of VMAT-HF was delivered with the same beam-on time with VMAT-FF but precise MLC leaf motions. The VMAT-HF potentially can play a valuable role in reducing OAR toxicities associated with WPRT.

4.
Data Brief ; 22: 620-626, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671508

RESUMO

The tables included in this article will allow the user to implement shot within shot optimization for Gamma Knife radiosurgery planning and delivery. The method is intended to reduce treatment time when treating small to medium sized brain metastasis. The tables were previously developed by extracting profiles from Gamma Plan for three collimator settings and modeling their behavior when combined or prescribed at different isodose lines. For a given target size, the tables represent the optimal selection of shot weighting and prescription isodose line to reduce beam on time while maintaining an acceptable dose gradient. The method was recently validated in a large patient cohort and the data is this study is related to the research article titled "Clinical evaluation of shot within shot optimization for Gamma Knife radiosurgery planning and delivery" (Johnson et al., in press).

5.
World Neurosurg ; 123: e218-e227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30481630

RESUMO

OBJECTIVE: Shot-within-shot (SWS) optimization is a new planning technique that relies on various combinations of shot weighting and prescription isodose line (IDL) to reduce beam-on time. The method differs from other planning techniques that incorporate mixed collimation, multiple stereotactic coordinates, and traditionally low prescription IDLs (<60%). In this work, we evaluate the percentage of brain metastasis for which the method can be applied, the magnitude of the resultant time savings, and the possible tradeoffs in plan quality. METHODS: A retrospective analysis was performed on 75 patients treated for 241 metastatic lesions in the brain. For each lesion, the original planning metrics related to target coverage, conformity, gradient, and beam-on time were recorded. A subset of lesions were selected for replanning using the SWS technique based on size, shape, and proximity to critical structures. Two replans were done, a reference plan was prescribed at the 50% IDL, and an optimized plan was prescribed at an IDL typically >50%. Planning metrics were then compared among the original plan and the 2 replans. RESULTS: More than a third (39%) of the brain metastases were eligible for the SWS technique. For these lesions, the differences between the original plan and reference SWS plan were as follows: ΔV12Gy < 0.5 cc in 93% of cases, ΔV12Gy < 0.5 cc in 100% of cases, Δselectivity < 0.1 in 79% of cases. Negligible differences were seen between the 2 replans in terms of Δselectivity and ΔV12Gy; ΔGI < 5% in 99% of cases. After optimization, beam-on time was reduced by 25%-30% in approximately 40%-50% of eligible lesions when compared with the reference SWS plan (ΔTmax = 42%). In comparison with the original plan, beam-on time was reduced even further, ΔT > 50% in 20% of cases (ΔTmax = 70%). CONCLUSIONS: This work demonstrates clinically that optimization using the shot-within-shot technique can reduce beam-on time without degrading treatment plan quality.


Assuntos
Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
6.
Radiother Oncol ; 129(2): 209-217, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279049

RESUMO

BACKGROUND AND PURPOSE: Radiomics textural features derived from PET imaging are of broad and current interest due to recent evidence of their prognostic value during cancer management. An inherent assumption is the link between these imaging features and the underlying tumoral phenotypic spatial heterogeneity. The purpose of this work was to validate this assumption for tumors within the lung through a comparison of image based textural features and the ground truth activity distribution from which the images were created. A second purpose was to assess the level at which PET imaging introduces spatial texture not present in the associated ground truth activity distribution. MATERIALS AND METHODS: 25 lung lesions were created using an anthropomorphic phantom. Ten of the lesions had a spherical shape with a uniform activity distribution. The remaining 15 had an irregular shape with a heterogeneous activity distribution. PET images were created for each lesion using Monte Carlo simulation. 79 textural features related to the gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, run length, and size zone matrices were derived from both the simulated PET images and ground truth activity maps. A comparison was made between the two datasets using statistical analysis. RESULTS: For homogenous lesions, features extracted from the PET images were largely irrelevant to the underlying uniform activity distribution. Additionally, the majority of these features assumed substantial values implying that an extensive amount of spatial texture had been introduced into the final imaging data. For heterogeneous lesions, complex trends were observed in the deviation between features extracted from PET images and those extracted from the ground truth activity maps. Moreover, the extent of both the deviation and the associated dynamic range was seen to be greatly feature-dependent. CONCLUSION: The use of image based textural features as a surrogate for tumoral phenotypic spatial heterogeneity could not be clearly validated. The association between the two is complex and a significant amount of uncertainty exist due to the introduction of incidental texture during image acquisition and reconstruction.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Oncologia/métodos , Método de Monte Carlo , Imagens de Fantasmas , Compostos Radiofarmacêuticos
7.
Radiat Oncol ; 12(1): 187, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178912

RESUMO

BACKGROUND: This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). METHODS: Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). RESULTS: For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm3. CONCLUSIONS: This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Encéfalo/cirurgia , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Encéfalo/patologia , Humanos , Prognóstico , Melhoria de Qualidade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Carga Tumoral
8.
Radiother Oncol ; 123(2): 257-262, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28433412

RESUMO

The purpose of this study was to investigate the correlation between image features extracted from PET images and the accuracy of manually drawn lesion contours in the lung. Such correlations are interesting in that they could potentially be used in predictive models to help guide physician contouring. In this work, 26 synthetic PET datasets were created using an anthropomorphic phantom and Monte Carlo simulation. Manual contours of simulated lesions were provided by 10 physicians. Contour accuracy was quantified using five commonly used similarity metrics which were then correlated with several features extracted from the images. Features were sub-divided into three groups using intensity, geometry, and texture as categorical descriptors. When averaged among the participants, the results showed relatively strong correlations with complexity and contrastI (r≥0.65, p<0.001), and moderate correlations with several other image features (r≥0.5, p<0.01). The predictive nature of these correlations was improved through stepwise regression and the creation of multi-feature models. Imaging features were also correlated with the standard deviation of contouring error in order to investigate inter-observer variability. Several features were consistently identified as influential including integral of mean curvature and complexity. These relationships further the understanding as to what causes variation in the contouring of PET positive lesions.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Humanos , Método de Monte Carlo , Variações Dependentes do Observador , Imagens de Fantasmas
9.
J Appl Clin Med Phys ; 17(3): 25-40, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167256

RESUMO

Benchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground-truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground-truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground-truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phan-toms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/patologia , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Benchmarking , Feminino , Humanos , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X
10.
J Appl Clin Med Phys ; 17(3): 158-170, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167273

RESUMO

"Reg Refine" is a tool available in the MIM Maestro v6.4.5 platform (www.mim-software.com) that allows the user to actively participate in the deformable image registration process. The purpose of this work was to evaluate the efficacy of this tool and investigate strategies for how to apply it effectively. This was done by performing DIR on two publicly available ground-truth models, the Pixel-based Breathing Thorax Model (POPI) for lung, and the Deformable Image Registration Evaluation Project (DIREP) for head and neck. Image noise matched in both magnitude and texture to clinical CBCT scans was also added to each model to simulate the use case of CBCT-CT alignment. For lung, the results showed Reg Refine effective at improving registration accuracy when controlled by an expert user within the context of large lung deformation. CBCT noise was also shown to have no effect on DIR performance while using the MIM algorithm for this site. For head and neck, the results showed CBCT noise to have a large effect on the accuracy of registration, specifically for low-contrast structures such as the brain-stem and parotid glands. In these cases, the Reg Refine tool was able to improve the registration accuracy when controlled by an expert user. Several strategies for how to achieve these results have been outlined to assist other users and provide feedback for developers of similar tools.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Pulmão/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos
11.
Oncotarget ; 7(14): 18825-36, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26958942

RESUMO

Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost.


Assuntos
Neoplasias da Próstata/veterinária , Radiocirurgia/veterinária , Animais , Masculino , Camundongos , Neoplasias da Próstata/cirurgia , Radiometria/métodos , Radiometria/veterinária , Radiocirurgia/métodos
12.
Med Phys ; 38(10): 5490-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21992367

RESUMO

PURPOSE: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. METHODS: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. RESULTS: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional fluoroscopy system. CONCLUSIONS: The skin dose mapping program developed in this work represents a new tool that, as the RDSR becomes available through automated export or real-time streaming, can provide the interventional physician information needed to modify behavior when clinically appropriate. The program is nonproprietary and transferable, and also functions independent to the software systems already installed on the control room workstation. The next step will be clinical implementation where the workflow will be optimized along with further analysis of real-time capabilities.


Assuntos
Fluoroscopia/métodos , Radiologia Intervencionista/métodos , Pele/efeitos da radiação , Algoritmos , Antropometria , Automação , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Imageamento Tridimensional/métodos , Modelos Anatômicos , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Pele/patologia , Software , Raios X
13.
Med Phys ; 38(2): 1008-17, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452738

RESUMO

PURPOSE: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. METHODS: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. RESULTS: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. CONCLUSIONS: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.


Assuntos
Fluoroscopia/instrumentação , Imagens de Fantasmas , Doses de Radiação , Adulto , Estatura , Peso Corporal , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Tomografia Computadorizada por Raios X
14.
Phys Med Biol ; 56(8): 2347-65, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21427484

RESUMO

A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.


Assuntos
Osso e Ossos/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Fótons , Tomografia Computadorizada por Raios X/métodos , Absorção , Adulto , Algoritmos , Osso e Ossos/patologia , Humanos , Masculino , Músculo Esquelético/patologia , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...