Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
In Silico Pharmacol ; 12(2): 73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144917

RESUMO

Bisphenol A (BPA), an endocrine-disrupting chemical, poses significant health problems due to its induction of oxidative stress, inflammation, etc. Whereas Ficus exasperata Vahl leaf (FEVL) was reported for its ethnopharmacological properties against several ailments owing to its antioxidant, anti-inflammatory properties, etc. Here, we aim to elucidate and identify the bioactive compounds of aqueous extract of FEVL (AEFEVL) against BPA-induced toxicity using in vivo and in silico assessments. To determine the BPA toxicity mechanism and safe doses of AEFEVL, graded doses of BPA (0-400 µM) and AEFEVL (0-2.0 mg/10 g diets) were separately fed to flies to evaluate survival rates and specific biochemical markers. The mitigating effect of AEFEVL (0.5 and 1.0 mg/10 g diet) against BPA (100 and 200 µM)-induced toxicity in the flies after 7-day exposure was also carried out. Additionally, molecular docking analysis of BPA and BPA-o-quinone (BPAQ) against selected antioxidant targets, and HPLC-MS-revealed AEFEVL compounds against Keap-1 and IKKß targets, followed by ADMET analysis, was conducted. Emergence rate, climbing ability, acetylcholinesterase, monoamine oxidase-B, and glutathione-S-transferase activities, and levels of total thiols, non-protein thiols, nitric oxide, protein carbonyl, malondialdehyde, and cell viability were evaluated. BPA-induced altered biochemical and behavioral parameters were significantly mitigated by AEFEVL in the flies (p < 0.05). BPAQ followed by BPA exhibited higher inhibitory activity, and epigallocatechin (EGC) showed the highest inhibitory activity among the AEFEVL compounds with desirable ADMET properties. Conclusively, our findings revealed that EGC might be responsible for the mitigative effect displayed by AEFEVL in BPA-induced toxicity in D. melanogaster.

2.
In Silico Pharmacol ; 12(1): 27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596366

RESUMO

Androgen receptor (AR) is known to play a crucial role in the development and progression of prostate cancer, and compounds that inhibit its activity are regarded as promising for the development of drugs to treat the disease. This study aimed to investigate the AR-inhibiting potential of Citrullus lanatus fruit compounds for prostate cancer drug development. Following HPLC identification, the binding energies, molecular interactions, and pharmacological potentials of the compounds against AR were elucidated using in silico techniques such as, molecular docking, induced-fit docking, molecular dynamics simulation, and ADMET prediction. Some of the compounds found to be present in Citrullus lanatus fruit included flavonoids such as proanthocyanin, naringin, flavan 3 ol, flavonones, naringenin, epicatechin, citrulline, and catechin. Naringenin exhibited the highest docking score in the molecular docking analysis, followed by resveratrol, ribalinidine, and epicatechin. These compounds share a common AR binding site with the standard ligand, dihydrotestosterone (DHT). Some of the compounds showed favorable ADMET profiles, while others showed at least one toxicity potential. The induced-fit docking of naringenin with AR yielded a higher docking score than the initial score obtained from standard docking while preserving stable molecular contacts with the interacting amino acids. Consistent hydrogen bond interactions of naringenin with PHE 764, ASN 705, and THR 877 of AR, including a persistent pi-pi stacking contact with PHE 764, were observed from the molecular dynamic simulation. The Citrullus lanatus compounds, particularly naringenin, may therefore be considered for further research towards the development of drugs for prostate cancer therapy.

3.
J Biomol Struct Dyn ; 42(5): 2512-2524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37293926

RESUMO

The anti-diabetic properties of medicinal plants are becoming more widely recognized. To identify potential anti-diabetic agents for diabetes drug discovery, the current study used in vitro and in silico approaches to assess the alpha glucosidase inhibitory activities of Tapinanthus cordifolius (TC) leaf extracts and its bioactive components respectively. In vitro alpha glucosidase inhibitory assay was carried out on TC extract and fractions at various concentrations (50-1600 µg/mL), and the compounds with alpha glucosidase inhibitory potentials were identified using molecular docking, pharmacophore modelling, and molecular dynamics simulation. The crude extract exhibited the highest activity with an IC50 value of 248 µg/mL. Out of the 42 phytocompounds of the extract, α-Tocopherol-ß-d-mannoside gave the lowest binding energy of -6.20 Kcal/mol followed by, 5-Ergosterol (-5.46 kcal/mol), Acetosyringone (-4.76 kcal/mol), and Benzaldehyde, 4-(Ethylthio)-2,5-Dimethoxy-(-4.67 kcal/mol). The selected compounds interacted with critical active site amino acid residues of alpha-glucosidase, just like the reference ligand. Molecular dynamics simulation revealed the formation of a stable complex between α-glucosidase and α-Tocopherol-ß-d-mannoside, with ASP 564 sustaining two hydrogen bond connections for 99.9 and 75.0% of the simulation duration, respectively. Therefore, the selected TC compounds, especially α-Tocopherol-ß-d-mannoside might be explored for future research and development as diabetic medicines.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Loranthaceae , alfa-Glucosidases , alfa-Tocoferol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Loranthaceae/química , Manosídeos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia
4.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109128

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) has been identified as a promising drug target for the development of diabetes medications via an inhibition mechanism. Using a computational approach, this study investigates the binding mechanism of lead optimized natural compounds from Allium sativum against the human PTP1B. The molecular docking, induced-fit docking, and binding free energy calculations were analyzed using Schrödinger Suite 2021-2. MD simulation, and gene enrichment analysis was achieved via the Desmond module of Schrödinger to identify best compounds as inhibitors against PTP1B in diabetes management. The docking scores of the lead optimized compounds were good; 5280443_121 from apigenin had the best binding score of -9.345 kcal/mol, followed by 5280443_129 with a binding score of -9.200 kcal/mol, and 5280863_177 from kaempferol had a binding score of -8.528 kcal/mol, followed by 5280863_462 with a binding score of -8.338 kcal/mol. The top two lead optimized compounds, docked better than the standard PTP1B inhibitor (-7.155 kcal/mol), suggesting them as potent inhibitors than the standard PTP1B inhibitor. The outcomes of the induced-fit docking were consistent with the increased binding affinity used in the Glide computation of the five conformed poses between the derivatives (5280443_121, 5280443_129, 5280863_177, and 5280863_462) and the protein (PTP1B). Based on the binding fee energies (MM-GBSA), the lead optimized compounds from kaempferol exhibited more stability than those from apigenin. In the pharmacophore development, all the models exhibit good results across the different metrics. The best performing model with five of five matches on a 1.34 and 1.33 phase score was DDRRR_1, DDRRR_2, and DDDRR_1. The average BEDROC value (= 160.9) was 1, while the average EF 1% value across all models was 101. There were no substantial conformational modifications during the MD simulation process, indicating that the apigenin derivatives (5280443_121) was stable in the protein's active site in 100 ns. IGF1R, EGFR, INSR, PTPN1, SRC, JAK2, GRB2, BCAR1, and IRS1 are among the 11 potential targets found in the protein-protein interaction (PPI) of A. sativum against PTP1B that may be important in A. sativum's defense against PTP1B. Sixty-four (64) pathways were found by KEGG pathway enrichment analysis to be potentially involved in the anti-PTP1B of A. sativum. Consequently, data obtained indicates the effectiveness of the in silico studies in identifying potential lead compounds in A. sativum against PTP1B target.Communicated by Ramaswamy H. Sarma.

5.
PLoS One ; 18(5): e0284210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200359

RESUMO

Oral antidiabetic agents including the peroxisome proliferator-activated receptor gamma (PPARγ) agonists are available for the clinical management of diabetes mellitus (DM) but most are characterized by many adverse effects. In this study, we explore the antidiabetic properties of phytoconstituents from Trigonellafeonumgraecum (Fabaceae) as potential agonist of PPARγ; using in silico molecular docking, molecular mechanics generalized surface area (MM/GBSA)free binding energy prediction, Pharmacophore modeling experiment, and Pharmacokinetic/ toxicity analysis. One hundred and forty (140) compounds derived from Trigonellafeonumgraecum were screened by molecular docking against protein target PDB 3VI8. Results obtained from binding affinity (BA) and that of binding free energy (BFE) revealed five 5 compounds; arachidonic acid (CID_10467, BA -10.029, BFE -58.9), isoquercetin (CID_5280804, BA -9.507kcal/mol, BFE -56.33), rutin (CID_5280805, BA -9.463kcal/mol, BFE -56.33), quercetin (CID_10121947, BA -11.945kcal/mol, BFE -45.89) and (2S)-2-[[4-methoxy-3-[(pyrene-1-carbonylamino)methyl]phenyl]methyl]butanoic acid (CID_25112371, BA -10.679kcal/mol, BFE -45.73); and were superior to the standard; Rosiglitazone with a docking score of -7.672. Hydrogen bonding was notable in the protein-ligand complex interaction, with hydrophobic bond, polar bond and pipi stacking also observed. Their Pharmacokinetic/ toxicity profile showed varying druggable characteristics, but; arachidonic acid had the most favorable characteristics. These compounds are potential agonists of PPARγ and are considered as antidiabetic agents after successful experimental validation.


Assuntos
Diabetes Mellitus , Trigonella , Ácido Araquidônico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacóforo , PPAR gama/metabolismo , Trigonella/metabolismo , Humanos
6.
World J Gastroenterol ; 29(2): 310-331, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36687123

RESUMO

Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn's disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided (in silico) discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Descoberta de Drogas
7.
J Biomol Struct Dyn ; 41(22): 13271-13286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36709454

RESUMO

Hepatocellular carcinoma (HCC) is a tumour pathology that lacks specific treatment and is predominantly resistant to chemotherapy. The inhibitory activity of Morinda citrifolia, an evergreen tree commonly called Noni, against various carcinomas especially HCC is widely acclaimed. This study was to assess the phytochemical constituents of the plant for inhibitory activity against B-Raf kinase (3C4C) in order to design drugs for HCC treatment. Molecular docking, pharmacophore modelling, induced-fit docking, molecular dynamics (MD) simulations and ADMET predictions were the computational techniques employed in this study to detect potential inhibitors of B-Raf kinase from 135 compounds of Morinda citrifolia. Soranjidiol, Thiamine, Lucidin, 2-Methyl-1,3,5-Trihydroxyanthraquinone and Rubiadin were the five top-scoring compounds ranging from -8.39 to -8.22 kcal/mol, however, the standard ligand, PLX4720, scored -11.26 kcal/mol. The five compounds, like PLX4720 demonstrated hydrogen bond interactions with active site amino acid residues such as GLN 530, CYS 532 and ASP 594. The main energy contributor to the interactions between the compounds and B-Raf kinase were pi-stacking, hydrogen bond, van der Waals and covalent energy. Better docking scores obtained in the induced-fit docking further validates the inhibitory potential of the Soranjidiol against the flexible protein. In MD simulations, Soranjidiol revealed good stability in the active site of the protein since significant conformational changes were not evident. These five compounds, unlike the standard compound, demonstrated adequate druglike properties and good safety profiles. Therefore, further studies should be undertaken so as to develop them into drugs against HCC.Communicated by Ramaswamy H. Sarma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Morinda , Proteínas Proto-Oncogênicas B-raf , Carcinoma Hepatocelular/tratamento farmacológico , Morinda/química , Simulação de Acoplamento Molecular , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Dinâmica Molecular
8.
J Biomol Struct Dyn ; 41(19): 9787-9796, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411736

RESUMO

Malaria control efforts have been hampered due to the emergence of resistant malaria parasite strains and the coinciding events of Covid-19. The quest for more effective and safe treatment alternatives is driving a slew of new studies that must be accelerated if malaria can be overcome. Due to its reported antimalarial activity, we studied the effects of extract and fractions of Phyllanthus nivosus leaf on Plasmodium lactate dehydrogenase (pLDH) activity using an in vitro assay. This was followed by an anti-plasmodial study using Plasmodium berghei-infected mice and an in silico identification of the plant's phytochemicals with possible pLDH-inhibitory activity. The activity of pLDH was significantly reduced in the presence of ethanol extract and various solvent fractions of Phyllanthus nivosus leaf, with the ethyl acetate fraction having the best inhibitory activity, which was comparable to that of the standard drug (chloroquine). The ethyl acetate fraction at 100 and 200 mg/Kg also suppressed the parasitaemia of Plasmodium berghei-infected mice by 76 and 80% respectively. Among the 53 compounds docked against pLDH, (-)-alpha-Cadinol, (+)-alpha-phellandrene, and spathulenol, all terpenes from the ethyl acetate fraction of P. nivosus leaf extract, demonstrated docking scores comparable to that of chloroquine. The three chemicals, like chloroquine, displayed important molecular interactions with the amino acid residues of the enzyme's NADH-binding site. According to the in silico ADMET study, the three terpenes have suitable drug-like abilities, pharmacokinetic features, and safety profiles. Hence, they could be considered for further development as antimalarial drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária , Camundongos , Animais , L-Lactato Desidrogenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Antimaláricos/química , Cloroquina/farmacologia , Plasmodium berghei , Plasmodium falciparum
9.
J Biomol Struct Dyn ; 41(18): 9013-9021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310100

RESUMO

The development of resistance to conventional antimalarial therapies, along with the unfavorable impact of the COVID-19 pandemic on the global malaria fight, necessitates a greater focus on the search for more effective antimalarial drugs. Targeting a specific enzyme of the malaria parasite to alter its metabolic pathways is a reliable technique for finding antimalarial drug candidates. In this study, we used an in silico technique to test four novel imidazoles and an oxazole derivative for inhibitory potential against Plasmodium lactate dehydrogenase (pLDH), a unique glycolytic enzyme necessary for parasite survival and energy production. The promising imidazole compounds and the oxazole derivative were then tested for anti-plasmodial efficacy in Plasmodium berghei-infected mice. With a binding energy of -6.593 kcal/mol, IM-3 had the best docking score against pLDH, which is close to that of NADH (-6.758 kcal/mol) and greater than that of chloroquine (-3.917 kcal/mol). The test compounds occupied the enzyme's NADH binding site, with IM-3 forming four hydrogen bonds with Thr-101, Pro-246, His-195 and Asn-140. Infected mice treatment with IM-3, IM-4 and OX-1 exhibited significantly reduced parasitemia over a four-day treatment period when compared to the infected untreated animals. At 5, 10 and 20 mg/kg, IM-3 demonstrated the highest anti-plasmodial activity, suppressing parasitemia by 86.13, 97.71 and 94.11%, respectively. PCV levels were restored by IM-3 and IM-4, and the three selected compounds reduced the lipid peroxidation induced by P. berghei infection in mice. Thus, these compounds may be considered for further development as antimalarial medicines.Communicated by Ramaswamy H. Sarma.

10.
Front Med (Lausanne) ; 9: 907583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783612

RESUMO

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from -7.84 to -7.15 kcal/mol compared with the -6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

11.
Biochem Biophys Rep ; 28: 101175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34869921

RESUMO

Acetylcholinesterase (AChE) has been an effective target for insecticide development which is a very important aspect of the global fight against insect-borne diseases. The drastic reduction in the sensitivity of insects to AChE-targeting insecticides like organophosphates and carbamates have increased the need for insecticides of natural origin. In this study, we used Drosophila melanogaster as a model to investigate the insecticidal and AChE inhibitory potentials of Cymbopogon citratus and its bioactive compounds. Flies were exposed to 100 and 200 mg/mL C. citratus leaf extract for a 3-h survival assay followed by 45 min exposure for negative geotaxis and biochemical assays. Molecular docking analysis of 45 bioactive compounds of the plant was conducted against Drosophila melanogaster AChE (DmAChE). Exposure to C. citratus significantly reduced the survival rate of flies throughout the exposure period and this was accompanied by a significant decrease in percentage negative geotaxis, AChE activity, catalase activity, total thiol level and a significant increase in glutathione-S-transferase (GST) activity. The bioactive compounds of C. citratus showed varying levels of binding affinities for the enzyme. (+)-Cymbodiacetal scored highest (-9.407 kcal/mol) followed by proximadiol (-8.253 kcal/mol), geranylacetone (-8.177 kcal/mol), and rutin (-8.148 kcal/mol). The four compounds occupied the same binding pocket and interacted with important active site amino acid residues as the co-crystallized ligand (1qon). These compounds could be responsible for the insecticidal and AChE inhibitory potentials of C. citratus and they could be further explored in the development of AChE-targeting insecticides.

12.
Toxicol Rep ; 8: 571-580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777703

RESUMO

Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) commonly found in cigarette smoke, automobile exhaust fumes, grilled meat, and smoked food among others. Exposure to B[a]P is associated with a range of toxic effects including developmental, neurological, oxidative, inflammatory, mutagenic, carcinogenic and mortal. Efficient and more affordable experimental models like Drosophila melanogaster could provide more insight into the mechanism of PAH toxicity and help develop new strategies for prevention, diagnosis and treatment of PAH-related conditions. In this study, we examined the induction of some biochemical changes along with mortality and functional senescence by B[a]P and its metabolite, benzo[a]pyrene- 7,8-dihydrodiol-910-epoxide (BPDE) in the Canton-S strain of Drosophila melanogaster, with the aim to establish an alternative assay medium for B[a]P toxicity in flies. Flies were exposed to 2-200 µM of B[a]P and 1-10 µM of BPDE through diet for a seven-day survival assay followed by a four-day treatment to determine the effects of the compounds on negative geotaxis, fecundity and some biochemical parameters of oxidative damage. BPDE significantly reduced the survival rate of flies along the 7 days of exposure whereas B[a]P did not cause any significant change in the survival rate of flies. B[a]P and BPDE significantly reduced the climbing ability of flies after 4 days of exposure. Rate of emergence of flies significantly reduced at 10-200 µM of B[a]P and 5-10 µM of BPDE. Both compounds caused various levels of alterations in the values of reduced glutathione (GSH), total thiol (T-SH), glutathione-S-transferase (GST), catalase (CAT), hydrogen peroxide (H2O2), nitric oxide (NO) and acetylcholinesterase (AChE) of the flies. The compounds also exhibited high binding affinities and molecular interactions with the active site amino acid residues of Drosophila GST and the inhibitor binding site of Drosophila AChE in an in silico molecular docking analysis, with BPDE forming stable hydrogen bonds with AChE. Hence, the Canton-S strain of Drosophila melanogaster could offer a simple and affordable assay medium to study B[a]P toxicity.

13.
Heliyon ; 6(5): e03893, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426537

RESUMO

Ulcerative colitis (UC) is an inflammation of the colon that can progress to colorectal cancer if left untreated. No medication completely cures UC and natural products are sources of alternative approaches. This study aimed to determine the anti-inflammatory potential of Phyllanthus nivosus leaf extract and fractions in a rat model of ulcerative colitis and to identify the active ingredients. UC was induced in rats by intra-rectal infusion of 1ml of 4% acetic acid (AA) in normal saline. AA exposed groups of rats were treated with 100 mg/kg bodyweight of methanol extract, hexane, ethyl-acetate and butanol fractions orally for four days. Another group received the standard drug - Dexamethasone and control rats were given distilled water only. Some biochemical changes were evaluated and the active ingredients were identified using Gas Chromatography-Mass Spectrometry (GC-MS) followed by molecular docking against interleukin-1-beta converting enzyme (Caspase-1), beta-2 adrenergic receptor (ADRB2), cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α). Exposure of rat colon to acetic acid significantly altered (p < 0.05) serum levels of tumour necrosis factor-alpha (TNF-α), interleukin - 6 (IL-6), nitric oxide (NO), lipid peroxidation product (malondialdehyde or MDA), reduced glutathione (GSH); and activities of superoxide dismutase (SOD) and catalase (CAT). These alterations were however restored in the rats treated with P. nivosus leaf with the ethyl-acetate fraction displaying the highest ameliorative activity. GC-MS analysis of the ethyl acetate fraction revealed the presence of 40 compounds which when subjected to molecular docking demonstrated varying degrees of binding affinities for the protein targets. Ethyl iso-allocholate demonstrated the highest binding affinity for caspase-1, cholest-22-ene-21-ol, 3,5-dehydro-6- methoxy-, pivalate for ADRB2 and TNF-α; and alpha-cadinol for COX-2. The anti-inflammatory potential of Phyllanthus nivosus leaf as a natural remedy and as a source of new drugs against ulcerative colitis is validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA