Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Surg Oncol ; 9: 46, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21539750

RESUMO

BACKGROUND: Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa) cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin. METHODS: Bromodeoxyuridine (BrdU) incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE) assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3ßSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25. RESULTS: CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK)-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3ß) and forkhead in human rhabdomyosarcoma (FKHR) inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.


Assuntos
Antineoplásicos/farmacologia , Quimiocinas CC/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores CCR/metabolismo , Apoptose , Neoplasias da Mama , Movimento Celular , Sobrevivência Celular , Quinase 1 de Adesão Focal/metabolismo , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
2.
Int J Oncol ; 38(5): 1279-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21344163

RESUMO

Breast cancer (BrCa) is one of the most frequently diagnosed cancers and the second leading cause of cancer-related deaths in North American women. Most deaths are caused by metastasis, and BrCa is characterized by a distinct metastatic pattern involving lymph nodes, bone marrow, lung, liver and brain. Migration of metastatic cells share many similarities with leukocyte trafficking, which are regulated by chemokines and their receptors. The current study evaluates the expression and functional role of CCR9, and its only known ligand, CCL25, in BrCa cell migration and invasion. Quantitative immunohistochemical analysis showed that both moderately and poorly differentiated BrCa tissue expressed significantly more (P<0.0001) CCR9 compared to non-neoplastic breast tissue. Interestingly, poorly differentiated BrCa tissue expressed significantly more (P<0.0001) CCR9 compared to moderately differentiated BrCa tissue. Similarly, CCR9 was highly expressed by the aggressive breast cancer cell line (MDA-MD-231) compared to the less aggressive MCF-7. Migration as well as invasion assays were used to evaluate the functional interaction between CCR9 and CCL25 in BrCa cell lines (MDA-MB-231 and MCF-7). Neutralizing CCR9-CCL25 interactions significantly impaired the migration and invasion of BrCa cells. Furthermore, CCL25 enhanced the expression of MMP-1, -9, -11 and -13 active proteins by BrCa cells in a CCR9-dependent fashion. These studies show CCR9 is functionally and significantly expressed by BrCa (poorly > moderately differentiated) tissue and cells as well as that CCL25 activation of this receptor promotes breast tumor cell migration, invasion and MMP expression, which are key components of BrCa metastasis.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Quimiocinas CC/fisiologia , Metaloproteinases da Matriz/análise , Receptores CCR/fisiologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Receptores CCR/análise , Receptores CCR/genética
3.
World J Surg Oncol ; 8: 62, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20649989

RESUMO

BACKGROUND: Ovarian carcinoma (OvCa) is the most lethal gynecological malignancy among women and its poor prognosis is mainly due to metastasis. Chemokine receptor CCR9 is primarily expressed by a small subset of immune cells and its only natural ligand, CCL25, is largely expressed in the thymus, which involutes with age. Other than the thymus, CCL25 is expressed by the small bowel. Interactions between CCL25 and CCR9 have been implicated in leukocyte trafficking to the small bowel, a frequent metastatic site for OvCa cells. The current study shows OvCa tissue and cells significantly express CCR9, which interacts with CCL25 to support carcinoma cell migration and invasion. METHODS: RT-PCR and flow cytometry techniques were used to quantify the expression CCR9 by OvCa cells. OvCa tissue microarrays (TMA) was used to confirm CCR9 expression in clinical samples. The Aperio ScanScope scanning system was used to quantify immunohistochemical staining. Cell invasion and migration assays were performed using cell migration and matrigel invasion chambers. Matrix metalloproteinase (MMP) mRNAs were quantified by RT-PCR and active MMPs were quantified by ELISA. RESULTS: Our results show significantly (p<0.001) higher expression of CCR9 by mucinous adenocarcinoma, papillary serous carcinoma, and endometriod ovarian carcinoma cases, than compared to non-neoplastic ovarian tissue. Furthermore, CCR9 expression was significantly elevated in OvCa cell lines (OVCAR-3 and CAOV-3) in comparison to normal adult ovarian epithelial cell mRNA. OvCa cells showed higher migratory and invasive potential towards chemotactic gradients of CCL25, which was inhibited by anti-CCR9 antibodies. Expression of collagenases (MMP-1, -8, and -13), gelatinases (MMP-2 and -9), and stromelysins (MMP-3, -10, and -11) by OvCa cells were modulated by CCL25 in a CCR9-dependent fashion. CONCLUSIONS: These results demonstrate both biological significance and clinical relevance of CCL25 and CCR9 interactions in OvCa cell metastasis.


Assuntos
Movimento Celular , Quimiocinas CC/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Metaloproteases/genética , Neoplasias Ovarianas/patologia , Receptores CCR/genética , Apoptose , Western Blotting , Proliferação de Células , Quimiocinas CC/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Metaloproteases/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , RNA Mensageiro/genética , Receptores CCR/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Células Tumorais Cultivadas
4.
J Ovarian Res ; 3: 15, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20565782

RESUMO

BACKGROUND: Cisplatin is more often used to treat ovarian cancer (OvCa), which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9). Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. METHODS: Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE) assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. RESULTS: Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3beta and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. CONCLUSIONS: Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...