Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 18(33): e2201750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871500

RESUMO

Gas diffusion layers (GDLs) play a crucial role in heat transfer and water management of cathode catalyst layers in polymer electrolyte fuel cells (PEFCs). Thermal and water gradients can accelerate electrocatalyst degradation and therefore the selection of GDLs can have a major influence on PEFC durability. Currently, the role of GDLs in electrocatalyst degradation is poorly studied. In this study, electrocatalyst accelerated stress test studies are performed on membrane electrode assemblies (MEAs) prepared using three most commonly used GDLs. The effect of GDLs on electrocatalyst degradation is evaluated in both nitrogen (non-reactive) and air (reactive) gas environments at 100% relative humidity. In situ electrochemical characterization and extensive physical characterization is performed to understand the subtle differences in electrocatalyst degradation and correlated to the use of different GDLs. Overall, no difference is observed in the electrocatalyst degradation due to GDLs based on polarization curves at the end of life. But interestingly, MEA with a cracked microporous layer (MPL) in the GDL exhibited a higher electrocatalyst loading loss, which resulted in a lower and more heterogeneous increase in the average electrocatalyst nanoparticle size.


Assuntos
Eletrólitos , Polímeros , Catálise , Difusão , Eletrodos , Eletrólitos/química , Gases , Polímeros/química , Água
2.
Chem Commun (Camb) ; 49(32): 3291-3, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23420477

RESUMO

A non-precious metal catalyst for oxygen reduction in acid media, enriched in graphene sheets/bubbles during a high-temperature synthesis step, has been developed from an Fe precursor and in situ polymerized polyaniline, supported on multi-walled carbon nanotubes. The catalyst showed no performance loss for 500 hours in a hydrogen/air fuel cell. The improved durability is correlated with the graphene formation, apparently enhanced in the presence of carbon nanotubes.

3.
Science ; 332(6028): 443-7, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21512028

RESUMO

The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).

4.
Faraday Discuss ; 140: 269-81; discussion 297-317, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19213322

RESUMO

Carbon-supported Se/Ru(Se) catalysts of a broad range of composition were synthesized via a reduction procedure in which a mixture of RuCl3, SeO2 and Black Pearl carbon was treated with NaBH4 in basic media at room temperature. Physical characterization of the catalyst was performed by X-ray diffraction, energy dispersive X-ray spectroscopy and by high resolution transmission electron microscopy. The effect of NaOH addition during the reduction by NaBH4 and the impact of a post-reduction thermal treatment at 500 degrees C were interrogated. The activity of the catalyst towards the oxygen reduction reaction was studied by the use of a rotating disk electrode. It was found that the half-wave potential for the oxygen reduction reaction was about 0.78 V vs. RHE. The Se-to-Ru ratio and metal loading on carbon were optimized for the oxygen reduction reaction and the optimized catalyst was tested at the cathode of a polymer electrolyte fuel cell. The stability of the Se/Ru(Se) catalyst was evaluated by electrochemical cycling and by leaching the catalyst in 0.5 M H2SO4 at 80 degrees C.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/métodos , Eletrodos , Oxigênio/química , Rutênio/química , Selênio/química , Água/química , Catálise , Simulação por Computador , Transporte de Elétrons , Modelos Químicos , Oxirredução , Propriedades de Superfície
5.
Langmuir ; 22(19): 8229-40, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16952267

RESUMO

Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.

6.
Langmuir ; 21(21): 9610-7, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16207043

RESUMO

We provide an electrochemical and structural characterization by in situ STM of Au(111)/Os electrodes prepared by spontaneous deposition of Os on Au(111). Surfaces with Os coverage values up to the saturation coverage were examined, from 10%. Using comparisons to previous work on Au(111)/Ru, Pt(111)/Ru, and Pt(111)/Os, we find that we may now generalize that Os deposits spontaneously faster than Ru and has a greater tendency to form 3-D structures. Additionally, the Au(111) substrate shows preferential step and near-step decoration in both cases, although it is less pronounced for Os than Ru. We also investigated the incremental dissolution of the Os from Au(111), to better understand electrochemical dissolution processes in general and to better control the Os deposit structure. The application of controlled electrochemical treatments (cyclic voltammetry up to increasingly positive values) significantly increased the dispersion of the Os deposit by generating smaller, more widely spaced islands. Upon voltammetry up to 0.75 V, the Au(111)/Os surface showed evidence of alloying and the formation of 3-D structures suggestive of strong Os-Os (oxidized) species interactions. The CO stripping results show the Au(111)/Os is not particularly effective for this reaction, but such results help to complete the overall picture of NM-NM catalytic combinations. Although the Au(111)/Os system itself is not catalytically active, the electrochemical manipulation of the deposit structure demonstrated here may be applied to other noble metal/noble metal (NM/NM) catalytic substrates to find optimal deposit morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA