Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Br J Pharmacol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794851

RESUMO

BACKGROUND AND PURPOSE: We extend the characterization of the TRPM8 antagonist VBJ103 with tests of selectivity, specificity and distribution, therapeutic efficacy of systemic administration against oxaliplatin-induced cold hyperalgesia and the impact of systemic administration on core body temperature (CBT). EXPERIMENTAL APPROACH: Selectivity at human TRPA1 and TRPV1 as well as in vitro safety profiling was determined. Effects of systemic administration of VBJ103 were evaluated in a model of oxaliplatin-induced cold hyperalgesia. Both peripheral and centrally mediated effects of VBJ103 on CBT were assessed with radiotelemetry. KEY RESULTS: VBJ103 had no antagonist activity at TRPV1 and TRPA1, but low potency TRPA1 activation. The only safety liability detected was partial inhibition of the dopamine transporter (DAT). VBJ103 delivered subcutaneously dose-dependently attenuated cold hypersensitivity in oxaliplatin-treated mice at 3, 10 and 30 mg·kg-1 (n = 7, P < 0.05). VBJ103 (30 mg·kg-1) antinociception was influenced by neither the TRPA1 antagonist HC-030031 nor the DAT antagonist GBR12909. Subcutaneous administration of VBJ103 (3, 10 and 30 mg·kg-1, but not 100 or 300 mg·kg-1, n = 7) decreased CBT (2°C). Intraperitoneal (i.p.) administration of VBJ103 (3, 10 and 30 mg·kg-1) dose-dependently decreased CBT to an extent larger than that detected with subcutaneous administration. Intracerebroventricular (i.c.v.) administration (306 nmol/1 µL; n = 5) did not alter CBT. CONCLUSIONS AND IMPLICATIONS: We achieve therapeutic efficacy with subcutaneous administration of a novel TRPM8 antagonist that attenuates deleterious influences on CBT, a side effect that has largely prevented the translation of TRPM8 as a target.

2.
Bioorg Med Chem Lett ; 108: 129810, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782078

RESUMO

PCI-34051 is a valuable tool to interrogate the therapeutic effects of selective inhibition of HDAC8. However, it has not advanced to clinical trials, perhaps due to poor PK or off-target effects. We hypothesized that the presence of a hydroxamic acid (HA) group in PCI-34051 contributed to its lack of advancement. Therefore, we replaced the HA in the PCI-34051 scaffold with a series of moieties that have the potential to bind to Zn and evaluated their activity in a HDAC8 assay. Surprisingly, none of the replacements effectively mimicked the HA, and analogs lost significant potency. Evaluation of the analogs' affinity to Zn indicated that none had affinity for Zn within the same range as the HA. These studies point to the difficulty in the application of bioisosteric replacements for Zn binding motifs.

4.
SLAS Discov ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549772

RESUMO

Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.

5.
J Appl Microbiol ; 133(3): 2083-2094, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35815837

RESUMO

AIMS: Two introgression lines (ILs), 182Q20 and 200A12, which had chromosomal segments introgressed from Hordeum bulbosum in H. vulgare backgrounds, were identified to show seedling resistance against Puccinia hordei, possibly attributed to two resistance genes, Rph22 and Rph26, respectively. This study characterized the phenotypic responses of the two genes against P. hordei over different plant development stages. METHODS AND RESULTS: Using visual and fungal biomass assessments, responses of ILs 182Q20, 200A12 and four other barley cultivars against P. hordei were determined at seedling, tillering, stem elongation and booting stages. Plants carrying either Rph22 or Rph26 were found to confer gradually increasing resistance over the course of different development stages, with partial resistant phenotypes (i.e. prolonged rust latency periods, reduced uredinia numbers but with susceptible infection types) observed at seedling stage and adult plant resistance (APR) at booting stage. A definitive switch between the two types of resistance occurred at tillering stage. CONCLUSIONS: Rph22 and Rph26 derived from H. bulbosum were well characterized and had typical APR phenotypes against P. hordei. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides important insights on the effectiveness and expression of Rph22 and Rph26 against P. hordei during plant development and underpins future barley breeding programmes using non-host as a genetic resource for leaf rust management.


Assuntos
Basidiomycota , Hordeum , Basidiomycota/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Hordeum/genética , Hordeum/microbiologia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
ACS Pharmacol Transl Sci ; 5(4): 207-215, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35434532

RESUMO

Acute kidney injury (AKI), a sudden loss of kidney function, is a common and serious condition for which there are no approved specific therapies. While there are multiple approaches to treat the underlying causes of AKI, no targets have been clinically validated. Here, we assessed a series of potent, selective competitive inhibitors of histone deacetylase 8 (HDAC8), a promising therapeutic target in an AKI setting. Using biochemical assays, zebrafish AKI phenotypic assays, and human kidney organoid assays, we show that selective HDAC8 inhibitors can lead to efficacy in increasingly stringent models. One of these, PCI-34051, was efficacious in a rodent model of AKI, further supporting the potential for HDAC8 inhibitors and, in particular, this scaffold as a therapeutic approach to AKI.

7.
SLAS Discov ; 27(1): 39-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058175

RESUMO

In solid tumors like head and neck cancer (HNC), chronic and acute hypoxia have serious adverse clinical consequences including poorer overall patient prognosis, enhanced metastasis, increased genomic instability, and resistance to radiation-, chemo-, or immuno-therapies. However, cells in the two-dimensional monolayer cultures typically used for cancer drug discovery experience 20%-21% O2 levels (normoxic) which are 4-fold higher than O2 levels in normal tissues and ≥10-fold higher than in the hypoxic regions of solid tumors. The oxygen electrodes, exogenous bio-reductive markers, and increased expression of endogenous hypoxia-regulated proteins like HIF-1α generally used to mark hypoxic regions in solid tumors are impractical in large sample numbers and longitudinal studies. We used a novel homogeneous live-cell permeant HypoxiTRAK™ (HPTK) molecular probe compatible with high content imaging detection, analysis, and throughput to identify and quantify hypoxia levels in live HNC multicellular tumor spheroid (MCTS) cultures over time. Accumulation of fluorescence HPTK metabolite in live normoxic HNC MCTS cultures correlated with hypoxia detection by both pimonidazole and HIF-1α staining. In HNC MCTSs, hypoxic cytotoxicity ratios for the hypoxia activated prodrugs (HAP) evofosfamide and tirapazamine were much smaller than have been reported for uniformly hypoxic 2D monolayers in gas chambers, and many viable cells remained after HAP exposure. Cells in solid tumors and MCTSs experience three distinct O2 microenvironments dictated by their distances from blood vessels or MCTS surfaces, respectively; oxic, hypoxic, or intermediate levels of hypoxia. These studies support the application of more physiologically relevant in vitro 3D models that recapitulate the heterogeneous microenvironments of solid tumors for preclinical cancer drug discovery.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Hipóxia/tratamento farmacológico , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
8.
SLAS Discov ; 26(5): 712-729, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33208016

RESUMO

We describe the development, optimization, and validation of 384-well growth inhibition assays for six patient-derived melanoma cell lines (PDMCLs), three wild type (WT) for BRAF and three with V600E-BRAF mutations. We conducted a pilot drug combination (DC) high-throughput screening (HTS) of 45 pairwise 4×4 DC matrices prepared from 10 drugs in the PDMCL assays: two B-Raf inhibitors (BRAFi), a MEK inhibitor (MEKi), and a methylation agent approved for melanoma; cytotoxic topoisomerase II and DNA methyltransferase chemotherapies; and drugs targeting the base excision DNA repair enzyme APE1 (apurinic/apyrimidinic endonuclease-1/redox effector factor-1), SRC family tyrosine kinases, the heat shock protein 90 (HSP90) molecular chaperone, and histone deacetylases.Pairwise DCs between dasatinib and three drugs approved for melanoma therapy-dabrafenib, vemurafenib, or trametinib-were flagged as synergistic in PDMCLs. Exposure to fixed DC ratios of the SRC inhibitor dasatinib with the BRAFis or MEKis interacted synergistically to increase PDMCL sensitivity to growth inhibition and enhance cytotoxicity independently of PDMCL BRAF status. These DCs synergistically inhibited the growth of mouse melanoma cell lines that either were dabrafenib-sensitive or had acquired resistance to dabrafenib with cross resistance to vemurafenib, trametinib, and dasatinib. Dasatinib DCs with dabrafenib, vemurafenib, or trametinib activated apoptosis and increased cell death in melanoma cells independently of their BRAF status or their drug resistance phenotypes. These preclinical in vitro studies provide a data-driven rationale for the further investigation of DCs between dasatinib and BRAFis or MEKis as candidates for melanoma combination therapies with the potential to improve outcomes and/or prevent or delay the emergence of disease resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/normas , Sinergismo Farmacológico , Ensaios de Triagem em Larga Escala/normas , Humanos , Melanoma/tratamento farmacológico , Camundongos , Reprodutibilidade dos Testes
9.
Regul Toxicol Pharmacol ; 117: 104764, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798611

RESUMO

Screening certain environmental chemicals for their ability to interact with endocrine targets, including the androgen receptor (AR), is an important global concern. We previously developed a model using a battery of eleven in vitro AR assays to predict in vivo AR activity. Here we describe a revised mathematical modeling approach that also incorporates data from newly available assays and demonstrate that subsets of assays can provide close to the same level of predictivity. These subset models are evaluated against the full model using 1820 chemicals, as well as in vitro and in vivo reference chemicals from the literature. Agonist batteries of as few as six assays and antagonist batteries of as few as five assays can yield balanced accuracies of 95% or better relative to the full model. Balanced accuracy for predicting reference chemicals is 100%. An approach is outlined for researchers to develop their own subset batteries to accurately detect AR activity using assays that map to the pathway of key molecular and cellular events involved in chemical-mediated AR activation and transcriptional activity. This work indicates in vitro bioactivity and in silico predictions that map to the AR pathway could be used in an integrated approach to testing and assessment for identifying chemicals that interact directly with the mammalian AR.


Assuntos
Antagonistas de Receptores de Andrógenos/toxicidade , Androgênios/toxicidade , Substâncias Perigosas/toxicidade , Modelos Teóricos , Receptores Androgênicos , Antagonistas de Receptores de Andrógenos/metabolismo , Androgênios/metabolismo , Animais , Exposição Ambiental/prevenção & controle , Exposição Ambiental/estatística & dados numéricos , Substâncias Perigosas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Receptores Androgênicos/metabolismo
11.
Cancer Lett ; 490: 124-142, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569616

RESUMO

Breast cancer is the second leading cause of mortality among women worldwide. Despite the available therapeutic regimes, variable treatment response is reported among different breast cancer subtypes. Recently, the effects of the tumor microenvironment on tumor progression as well as treatment responses have been widely recognized. Hypoxia and hypoxia inducible factors in the tumor microenvironment have long been known as major players in tumor progression and survival. However, the majority of our understanding of hypoxia biology has been derived from two dimensional (2D) models. Although many hypoxia-targeted therapies have elicited promising results in vitro and in vivo, these results have not been successfully translated into clinical trials. These limitations of 2D models underscore the need to develop and integrate three dimensional (3D) models that recapitulate the complex tumor-stroma interactions in vivo. This review summarizes role of hypoxia in various hallmarks of cancer progression. We then compare traditional 2D experimental systems with novel 3D tissue-engineered models giving accounts of different bioengineering platforms available to develop 3D models and how these 3D models are being exploited to understand the role of hypoxia in breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , Hipóxia Celular/fisiologia , Modelos Biológicos , Esferoides Celulares , Animais , Feminino , Humanos
12.
J Clin Neurosci ; 78: 400-402, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32340843

RESUMO

Despite significant medical advances, glioblastoma multiforme (GBM) remains a formidable therapeutic challenge. Advent of targeted capture sequencing and patients-derived organoid cultures may hold the key to scientifically sound individualized treatment approaches. We report on our initial experience of using the combination of these two technologies to create a tailored approach of systemic therapies for a patient with GBM, which challenges the conventional treatment paradigm, as well as specifically highlighting the complexities of such an approach and the potential for a more favorable treatment outcome.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Neoplasias Encefálicas/patologia , Humanos , Organoides/efeitos dos fármacos , Organoides/patologia , Resultado do Tratamento , Células Tumorais Cultivadas/efeitos dos fármacos
13.
SLAS Discov ; 25(4): 329-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983262

RESUMO

With approval rates <5% and the probability of success in oncology clinical trials of 3.4%, more physiologically relevant in vitro three-dimensional models are being deployed during lead generation to select better drug candidates for solid tumors. Multicellular tumor spheroids (MCTSs) resemble avascular tumor nodules, micrometastases, or the intervascular regions of large solid tumors with respect to morphology, cell-cell and cell-extracellular matrix contacts, and volume growth kinetics. MCTSs develop gradients of nutrient and oxygen concentration resulting in diverse microenvironments with differential proliferation and drug distribution zones. We produced head and neck squamous cell carcinoma (HNSCC) MCTSs in 384-well U-bottom ultra-low-attachment microtiter plates and used metabolic viability and imaging methods to measure morphologies, growth phenotypes and the effects of 19 anticancer drugs. We showed that cell viability measurements underestimated the impact of drug exposure in HNSCC MCTS cultures, but that incorporating morphology and dead-cell staining analyses increased the number of drugs judged to have substantially impacted MCTS cultures. A cumulative multiparameter drug impact score enabled us to stratify MCTS drug responses into high-, intermediate-, and low-impact tiers, and maximized the value of these more physiologically relevant tumor cultures. It is conceivable that the viable cells present in MCTS cultures after drug exposure arise from drug-resistant populations that could represent a source of drug failure and recurrence. Long-term monitoring of treated MCTS cultures could provide a strategy to determine whether these drug-resistant populations represent circumstances where tumor growth is delayed and may ultimately give rise to regrowth.


Assuntos
Antineoplásicos/farmacologia , Detecção Precoce de Câncer , Esferoides Celulares/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/efeitos dos fármacos
14.
Front Chem ; 7: 822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850311

RESUMO

The eight mammalian Src-family tyrosine kinases are dynamic, multi-domain structures, which adopt distinct "open" and "closed" conformations. In the closed conformation, the regulatory SH3 and SH2 domains pack against the back of the kinase domain, providing allosteric control of kinase activity. Small molecule ligands that engage the regulatory SH3-SH2 region have the potential to modulate Src-family kinase activity for therapeutic advantage. Here we describe an HTS-compatible fluorescence polarization assay to identify small molecules that interact with the unique-SH3-SH2-linker (U32L) region of Hck, a Src-family member expressed exclusively in cells of myeloid lineage. Hck has significant potential as a drug target in acute myeloid leukemia, an aggressive form of cancer with substantial unmet clinical need. The assay combines recombinant Hck U32L protein with a fluorescent probe peptide that binds to the SH3 domain in U32L, resulting in an increased FP signal. Library compounds that interact with the U32L protein and interfere with probe binding reduce the FP signal, scoring as hits. Automated 384-well high-throughput screening of 60,000 compounds yielded Z'-factor coefficients > 0.7 across nearly 200 assay plates, and identified a series of hit compounds with a shared pyrimidine diamine substructure. Surface plasmon resonance assays confirmed direct binding of hit compounds to the Hck U32L target protein as well as near-full-length Hck. Binding was not observed with the individual SH3 and SH2 domains, demonstrating that these compounds recognize a specific three-dimensional conformation of the regulatory regions. This conclusion is supported by computational docking studies, which predict ligand contacts with a pocket formed by the juxtaposition of the SH3 domain, the SH3-SH2 domain connector, and the SH2-kinase linker. Each of the four validated hits stimulated recombinant, near-full-length Hck activity in vitro, providing evidence for allosteric effects on the kinase domain. These results provide a path to discovery and development of chemical scaffolds to target the regulatory regions of Hck and other Src family kinases as a new approach to pharmacological kinase control.

15.
Nat Plants ; 5(11): 1129-1135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712760

RESUMO

Global food security depends on cereal crops with durable disease resistance. Most cereals are colonized by rust fungi, which are pathogens of major significance for global agriculture1. Cereal rusts display a high degree of host specificity and one rust species or forma specialis generally colonizes only one cereal host2. Exploiting the non-host status and transferring non-host resistance genes between cereal crop species has been proposed as a strategy for durable rust resistance breeding. The molecular determinants that define the host status to rusts, however, are largely unknown. Here, we show that orthologous genes at the Rphq2 locus for quantitative leaf rust resistance from cultivated barley3 and Rph22 from wild bulbous barley4 affect the host status to leaf rusts. Both genes encode lectin receptor-like kinases. We transformed Rphq2 and Rph22 into an experimental barley line that has been bred for susceptibility to non-adapted leaf rusts, which allowed us to quantify resistance responses against various leaf rust species. Rphq2 conferred a much stronger resistance to the leaf rust of wild bulbous barley than to the leaf rust adapted to cultivated barley, while for Rph22 the reverse was observed. We hypothesize that adapted leaf rust species mitigate perception by cognate host receptors by lowering ligand recognition. Our results provide an example of orthologous genes that connect the quantitative host with non-host resistance to cereal rusts. Such genes provide a basis to exploit non-host resistance in molecular breeding.


Assuntos
Basidiomycota/fisiologia , Grão Comestível/enzimologia , Hordeum/enzimologia , Doenças das Plantas/imunologia , Proteínas Quinases/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Grão Comestível/microbiologia , Hordeum/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Especificidade da Espécie
16.
Assay Drug Dev Technol ; 17(8): 364-386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31502857

RESUMO

Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Chaperonas Moleculares/farmacologia , Receptores Androgênicos/metabolismo , Ativação Transcricional/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Chaperonas Moleculares/química , Células PC-3 , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
SLAS Discov ; 24(6): 653-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039321

RESUMO

Systematic unbiased high-throughput screening (HTS) of drug combinations (DCs) in well-characterized tumor cell lines is a data-driven strategy to identify novel DCs with potential to be developed into effective therapies. Four DCs from a DC HTS campaign were selected for confirmation; only one appears in clinicaltrials.gov and limited preclinical in vitro data indicates that the drug pairs interact synergistically. Nineteen DC-tumor cell line sets were confirmed to interact synergistically in three pharmacological interaction models. We developed an imaging assay to quantify accumulation of the ABCG2 efflux transporter substrate Hoechst. Gefitinib and raloxifene enhanced Hoechst accumulation in ABCG2 (BCRP)-expressing cells, consistent with inhibition of ABCG2 efflux. Both drugs also inhibit ABCB1 efflux. Mitoxantrone, daunorubicin, and vinorelbine are substrates of one or more of the ABCG2, ABCB1, or ABCC1 efflux transporters expressed to varying extents in the selected cell lines. Interactions between ABC drug efflux transporter inhibitors and substrates may have contributed to the observed synergy; however, other mechanisms may be involved. Novel synergistic DCs identified by HTS were confirmed in vitro, and plausible mechanisms of action studied. Similar approaches may justify the testing of novel HTS-derived DCs in mouse xenograft human cancer models and support the clinical evaluation of effective in vivo DCs in patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Imagem Molecular , Projetos Piloto
18.
SLAS Discov ; 24(3): 242-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30500310

RESUMO

Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Ensaios de Triagem em Larga Escala , Humanos
19.
Assay Drug Dev Technol ; 17(1): 17-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592624

RESUMO

Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Doxorrubicina/farmacologia , Ensaios de Triagem em Larga Escala , Esferoides Celulares/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas
20.
Theor Appl Genet ; 131(12): 2567-2580, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30178277

RESUMO

KEY MESSAGE: The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes. A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar 'Emir'. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar 'Emir' to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Padrões de Herança , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...