Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Phys Chem A ; 128(10): 1793-1816, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427685

RESUMO

The Δδ regression approach of Blade et al. [ J. Phys. Chem. A 2020, 124(43), 8959-8977] for accurately discriminating between solid forms using a combination of experimental solution- and solid-state NMR data with density functional theory (DFT) calculation is here extended to molecules with multiple conformational degrees of freedom, using furosemide polymorphs as an exemplar. As before, the differences in measured 1H and 13C chemical shifts between solution-state NMR and solid-state magic-angle spinning (MAS) NMR (Δδexperimental) are compared to those determined by gauge-including projector augmented wave (GIPAW) calculations (Δδcalculated) by regression analysis and a t-test, allowing the correct furosemide polymorph to be precisely identified. Monte Carlo random sampling is used to calculate solution-state NMR chemical shifts, reducing computation times by avoiding the need to systematically sample the multidimensional conformational landscape that furosemide occupies in solution. The solvent conditions should be chosen to match the molecule's charge state between the solution and solid states. The Δδ regression approach indicates whether or not correlations between Δδexperimental and Δδcalculated are statistically significant; the approach is differently sensitive to the popular root mean squared error (RMSE) method, being shown to exhibit a much greater dynamic range. An alternative method for estimating solution-state NMR chemical shifts by approximating the measured solution-state dynamic 3D behavior with an ensemble of 54 furosemide crystal structures (polymorphs and cocrystals) from the Cambridge Structural Database (CSD) was also successful in this case, suggesting new avenues for this method that may overcome its current dependency on the prior determination of solution dynamic 3D structures.

2.
Nanoscale ; 16(14): 7225-7236, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511340

RESUMO

Group IV GeSn quantum material finds application in electronics and silicon-compatible photonics. Synthesizing these materials with low defect density and high carrier lifetime is a potential challenge due to lattice mismatch induced defects and tin segregation at higher growth temperature. Recent advancements in the growth of these GeSn materials on Si, Ge, GaAs, and with substrate orientations, demonstrated different properties using epitaxial and chemical deposition methods. This article addresses the effect of GaAs substrate orientation and misorientation on the materials' properties and carrier lifetimes in epitaxial Ge0.94Sn0.06 layers. With starting GaAs substrates of (100)/2°, (100)/6°, (110) and (111)A orientations, Ge0.94Sn0.06 epitaxial layers were grown with an intermediate Ge buffer layer by molecular beam epitaxy and analyzed by several analytical tools. X-ray analysis displayed good crystalline quality, and Raman spectroscopy measurements showed blue shifts in phonon wavenumber due to biaxial compressive strain in Ge0.94Sn0.06 epilayers. Cross-sectional transmission electron microscopy analysis confirmed the defect-free heterointerface of Ge0.94Sn0.06/Ge/GaAs heterostructure. Minority carrier lifetimes of the unintentionally doped n-type Ge0.94Sn0.06 epilayers displayed photoconductive carrier lifetimes of >400 ns on (100)/6°, 319 ns on (100)/2°, and 434 ns on (110) GaAs substrate at 1500 nm excitation wavelength. On the other hand, Ge0.94Sn0.06 layer showed poor carrier lifetime on (111)A GaAs substrate. The observed differences in carrier lifetimes were correlated with the formation energy of the Ge on (100)/6° and (100)/2° GaAs heterointerface using Stillinger-Weber interatomic potential model-based atomistic simulation with different heterointerfacial bonding by Synopsys QuantumATK tool. Total energy computation of 6280-atom Ge/GaAs supercell on (100)/6° leads to lower formation energy than (100)/2°, making it more thermodynamically stable. Hence, the growth of the GeSn/III-V material system using misoriented (100) substrates that are more thermodynamically stable will enhance the performances of optoelectronic devices.

3.
Phys Rev E ; 107(5-1): 054104, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329019

RESUMO

We introduce the group-equivariant autoencoder (GE autoencoder), a deep neural network (DNN) method that locates phase boundaries by determining which symmetries of the Hamiltonian have spontaneously broken at each temperature. We use group theory to deduce which symmetries of the system remain intact in all phases, and then use this information to constrain the parameters of the GE autoencoder such that the encoder learns an order parameter invariant to these "never-broken" symmetries. This procedure produces a dramatic reduction in the number of free parameters such that the GE-autoencoder size is independent of the system size. We include symmetry regularization terms in the loss function of the GE autoencoder so that the learned order parameter is also equivariant to the remaining symmetries of the system. By examining the group representation by which the learned order parameter transforms, we are then able to extract information about the associated spontaneous symmetry breaking. We test the GE autoencoder on the 2D classical ferromagnetic and antiferromagnetic Ising models, finding that the GE autoencoder (1) accurately determines which symmetries have spontaneously broken at each temperature; (2) estimates the critical temperature in the thermodynamic limit with greater accuracy, robustness, and time efficiency than a symmetry-agnostic baseline autoencoder; and (3) detects the presence of an external symmetry-breaking magnetic field with greater sensitivity than the baseline method. Finally, we describe various key implementation details, including a quadratic-programming-based method for extracting the critical temperature estimate from trained autoencoders and calculations of the DNN initialization and learning rate settings required for fair model comparisons.


Assuntos
Aprendizagem , Campos Magnéticos , Imãs , Redes Neurais de Computação , Temperatura
4.
Phys Rev E ; 107(5-2): 055301, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329105

RESUMO

We consider a class of Hubbard-Stratonovich transformations suitable for treating Hubbard interactions in the context of quantum Monte Carlo simulations. A tunable parameter p allows us to continuously vary from a discrete Ising auxiliary field (p=∞) to a compact auxiliary field that couples to electrons sinusoidally (p=0). In tests on the single-band square and triangular Hubbard models, we find that the severity of the sign problem decreases systematically with increasing p. Selecting p finite, however, enables continuous sampling methods such as the Langevin or Hamiltonian Monte Carlo methods. We explore the tradeoffs between various simulation methods through numerical benchmarks.


Assuntos
Elétrons , Simulação por Computador , Método de Monte Carlo
5.
Nat Commun ; 14(1): 2889, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210389

RESUMO

There is growing evidence that the hole-doped single-band Hubbard and t - J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and charge-ordered ground states. Nevertheless, it is proposed that these models may still provide an effective low-energy model for electron-doped materials. Here we study the finite temperature spin and charge correlations in the electron-doped Hubbard model using quantum Monte Carlo dynamical cluster approximation calculations and contrast their behavior with those found on the hole-doped side of the phase diagram. We find evidence for a charge modulation with both checkerboard and unidirectional components decoupled from any spin-density modulations. These correlations are inconsistent with a weak-coupling description based on Fermi surface nesting, and their doping dependence agrees qualitatively with resonant inelastic x-ray scattering measurements. Our results provide evidence that the single-band Hubbard model describes the electron-doped cuprates.

6.
Phys Rev E ; 105(4-2): 045311, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590547

RESUMO

We present a method to facilitate Monte Carlo simulations in the grand canonical ensemble given a target mean particle number. The method imposes a fictitious dynamics on the chemical potential, to be run concurrently with the Monte Carlo sampling of the physical system. Corrections to the chemical potential are made according to time-averaged estimates of the mean and variance of the particle number, with the latter being proportional to thermodynamic compressibility. We perform a variety of tests, and in all cases find rapid convergence of the chemical potential-inexactness of the tuning algorithm contributes only a minor part of the total measurement error for realistic simulations.

7.
Proc Natl Acad Sci U S A ; 119(7)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140180

RESUMO

The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite-cluster methods typically indicate that stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides an opportunity to study the influence of fluctuating stripe correlations on the model's pairing correlations within a unified numerical framework. Using this approach, we also find evidence for pair-density-wave correlations whose strength is correlated with that of the stripes.

8.
Nat Commun ; 12(1): 3122, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035254

RESUMO

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

9.
ACS Energy Lett ; 6(5): 2038-2047, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37152100

RESUMO

Temperature coefficients for maximum power (T PCE), open circuit voltage (V OC), and short circuit current (J SC) are standard specifications included in data sheets for any commercially available photovoltaic module. To date, there has been little work on determining the T PCE for perovskite photovoltaics (PV). We fabricate perovskite solar cells with a T PCE of -0.08 rel %/°C and then disentangle the temperature-dependent effects of the perovskite absorber, contact layers, and interfaces by comparing different device architectures and using drift-diffusion modeling. A main factor contributing to the small T PCE of perovskites is their low intrinsic carrier concentrations with respect to Si and GaAs, which can be explained by its wider band gap. We demonstrate that the unique increase in E g with increasing temperatures seen for perovskites results in a reduction in J SC but positively influences V OC. The current limiting factors for the T PCE in perovskite PV are identified to originate from interfacial effects.

10.
Sci Rep ; 10(1): 17670, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33051542

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Phys Rev Lett ; 125(11): 117001, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976011

RESUMO

Adsorption of one-third monolayer of Sn on an atomically clean Si(111) substrate produces a two-dimensional triangular adatom lattice with one unpaired electron per site. This dilute adatom reconstruction is an antiferromagnetic Mott insulator; however, the system can be modulation doped and metallized using heavily doped p-type Si(111) substrates. Here, we show that the hole-doped dilute adatom layer on a degenerately doped p-type Si(111) wafer is superconducting with a critical temperature of 4.7±0.3 K. While a phonon-mediated coupling scenario would be consistent with the observed T_{c}, Mott correlations in the Sn-derived dangling-bond surface state could suppress the s-wave pairing channel. The latter suggests that the superconductivity in this triangular adatom lattice may be unconventional.

12.
Proc Natl Acad Sci U S A ; 117(28): 16219-16225, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586955

RESUMO

Charge-density waves (CDWs) are ubiquitous in underdoped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate underdoped Bi2Sr1.4La0.6CuO6+δ using resonant inelastic X-ray scattering (RIXS) and find that a short-range CDW exists at both Cu and O sublattices in the copper-oxide (CuO2) planes with a comparable periodicity and correlation length. Furthermore, we uncover bond-stretching and bond-buckling phonon anomalies concomitant to the CDWs. Comparing to slightly overdoped Bi2Sr1.8La0.2CuO6+δ, where neither CDWs nor phonon anomalies appear, we highlight that a sharp intensity anomaly is induced in the proximity of the CDW wavevector (QCDW) for the bond-buckling phonon, in concert with the diffused intensity enhancement of the bond-stretching phonon at wavevectors much greater than QCDW Our results provide a comprehensive picture of the quasistatic CDWs, their dispersive excitations, and associated electron-phonon anomalies, which are key for understanding the competing electronic instabilities in cuprates.

13.
Sci Rep ; 9(1): 7497, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097728

RESUMO

Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.

14.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626131

RESUMO

Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.

15.
Proc Natl Acad Sci U S A ; 115(7): 1475-1480, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382769

RESUMO

The nature of superconductivity in the dilute semiconductor SrTiO3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm-3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.

16.
Nat Commun ; 9(1): 86, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311661

RESUMO

Many-body effects produce deviations from the predictions of conventional band theory in quantum materials, leading to strongly correlated phases with insulating or bad metallic behavior. One example is the rare-earth nickelates RNiO3, which undergo metal-to-insulator transitions (MITs) whose origin is debated. Here, we combine total neutron scattering and broadband dielectric spectroscopy experiments to study and compare carrier dynamics and local crystal structure in LaNiO3 and NdNiO3. We find that the local crystal structure of both materials is distorted in the metallic phase, with slow, thermally activated carrier dynamics at high temperature. We further observe a sharp change in conductivity across the MIT in NdNiO3, accompanied by slight differences in the carrier hopping time. These results suggest that changes in carrier concentration drive the MIT through a polaronic mechanism, where the (bi)polaron liquid freezes into the insulating phase across the MIT temperature.

17.
Phys Rev Lett ; 119(22): 227001, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286823

RESUMO

We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

18.
Phys Rev Lett ; 119(10): 107003, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949163

RESUMO

Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e-ph interaction with interfacial phonons in an iron-based superconductor Sr_{2}VO_{3}FeAs (T_{c}≈33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in the VO_{2} layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

19.
J Digit Imaging ; 30(6): 772-781, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28342044

RESUMO

Lung histopathology is currently based on the analysis of 2D sections of tissue samples. The use of microfocus X-ray-computed tomography imaging of unstained soft tissue can provide high-resolution 3D image datasets in the range of 2-10 µm without affecting the current diagnostic workflow. Important details of structural features such as the tubular networks of airways and blood vessels are contained in these datasets but are difficult and time-consuming to identify by manual image segmentation. Providing 3D structures permits a better understanding of tissue functions and structural interrelationships. It also provides a more complete picture of heterogeneous samples. In addition, 3D analysis of tissue structure provides the potential for an entirely new level of quantitative measurements of this structure that have previously been based only on extrapolation from 2D sections. In this paper, a workflow for segmenting such 3D images semi-automatically has been created using and extending the ImageJ open-source software and key steps of the workflow have been integrated into a new ImageJ plug-in called LungJ. Results indicate an improved workflow with a modular organization of steps facilitating the optimization for different sample and scan properties with expert input as required. This allows for incremental and independent optimization of algorithms leading to faster segmentation. Representation of the tubular networks in samples of human lung, building on those segmentations, has been demonstrated using this approach.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias Pulmonares/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Reconhecimento Automatizado de Padrão/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Humanos , Pulmão/ultraestrutura , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/ultraestrutura , Masculino , Fluxo de Trabalho , Raios X
20.
J Am Dent Assoc ; 147(4): 271-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26712308

RESUMO

BACKGROUND: Novel oral antiplatelet (NOAP) drugs (prasugrel and ticagrelor) have emerged in the past decade to overcome some of the drawbacks of existing medications. Little is known, however, regarding the management of the dental care of patients taking these drugs. The author of this study reviewed the available literature to assess the evidence for the management of the care of patients undergoing dental surgery while taking these medications. METHODS: The author used a rapid review approach to identify clinical and scientific research related to dental surgery performed in patients taking NOAP drugs to produce an evidence summary. RESULTS: The author did not identify any dental-related systematic reviews or randomized controlled trials of prasugrel and ticagrelor and found the overall quality of evidence to be poor. Most of the literature consisted of nonstructured review articles and guidance documents based on assumptions from nondental data and expert opinion; recommendations on best practice varied throughout. CONCLUSIONS: The findings from the review of the literature on NOAP drugs varied considerably. Recommendations are based on poor-quality scientific data, and clinical trials are required to establish best evidence-based practice guidance. PRACTICAL IMPLICATIONS: Owing to the lack of evidence on NOAP drugs for dental procedures, clinicians should base their decisions to prescribe prasugrel and ticagrelor knowing recommendations provided in the literature are either unlikely to have sound scientific backing or may have been derived from extrapolation from other surgical specialties. Clinicians should tread carefully when managing the care of dental patients taking NOAP drugs.


Assuntos
Procedimentos Cirúrgicos Bucais/métodos , Inibidores da Agregação Plaquetária/efeitos adversos , Perda Sanguínea Cirúrgica/prevenção & controle , Assistência Odontológica/métodos , Odontologia Baseada em Evidências , Humanos , Procedimentos Cirúrgicos Bucais/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...