Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Crit Rev Microbiol ; : 1-26, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381581

RESUMO

Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.

2.
Bio Protoc ; 13(20): e4855, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37965269

RESUMO

Maize is one of the most important crops in the world, and ensuring its successful growth and productivity is crucial for global food security. One way to enhance maize growth and productivity is by improving the colonization of its roots by beneficial microorganisms. In this regard, Serendipita indica, a plant growth-promoting fungus, has gained attention for its ability to enhance plant growth and productivity, especially in cereal crops and medicinal plants. Previous studies have shown that S. indica can colonize various plant species, including maize, but the efficiency of the colonization process in maize seedlings has not been extensively characterized. This protocol outlines a method for efficient colonization of maize seedlings with the beneficial fungus S. indica. The protocol includes the preparation of stock solutions, maintenance and growth of S. indica, surface sterilization and germination of seeds, preparation of S. indica chlamydospores, and colonization of maize plants with S. indica. The advantages of this protocol include the use of surface sterilization techniques that minimize contamination, the production of a large number of viable chlamydospores, and efficient colonization of maize seedlings with S. indica. This protocol may be useful for researchers studying the role of S. indica in promoting plant growth and combating biotic and abiotic stress. Additionally, this protocol may be used in the development of biofertilizers using S. indica as a means of increasing crop yields and reducing dependence on synthetic fertilizers. Overall, this protocol offers a reliable and efficient method for colonizing maize seedlings with S. indica and may have potential applications in the agricultural industry. This study also provides a valuable tool for researchers interested in studying plant-microbe interactions in maize and highlights the potential of S. indica as a biocontrol agent to enhance maize productivity under adverse conditions. Key features • This protocol builds upon the method developed by Narayan et al. (2022), and its application optimized for the root endophytic symbiotic fungus S. indica. • This protocol also allows for histochemical analysis to visualize the colonized fungal spores in the root cells of host plant species. • This protocol helps in mathematical calculation of the percent colonization or efficiency of colonization. • This protocol utilizes readily available laboratory equipment, including a light microscope, autoclave, and laminar flow hood, ensuring ease of reproducibility in other research laboratories.

3.
BMC Microbiol ; 23(1): 176, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407919

RESUMO

BACKGROUND: Group B Streptococcus (GBS) is a causative agent of various infections in newborns, immunocompromised (especially diabetic) non-pregnant adults, and pregnant women. Antibiotic resistance profiling can provide insights into the use of antibiotic prophylaxis against potential GBS infections. Virulence factors are responsible for host-bacteria interactions, pathogenesis, and biofilm development strategies. The aim of this study was to determine the biofilm formation capacity, presence of virulence genes, and antibiotic susceptibility patterns of clinical GBS isolates. RESULTS: The resistance rate was highest for penicillin (27%; n = 8 strains) among all the tested antibiotics, which indicates the emergence of penicillin resistance among GBS strains. The susceptibility rate was highest for ofloxacin (93%; n = 28), followed by azithromycin (90%; n = 27). Most GBS strains (70%; n = 21) were strong biofilm producers and the rest (30%; n = 9) were moderate biofilm producers. The most common virulence genes were cylE (97%), pavA (97%), cfb (93%), and lmb (90%). There was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility, according to Spearman's rank correlation analysis. CONCLUSION: About a third of GBS strains exhibited penicillin resistance and there was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility. Further, both the strong and moderate biofilm producers carried most of the virulence genes tested for, and the strong biofilm formation phenotype was not associated with the presence of any virulence genes.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Feminino , Gravidez , Humanos , Sorogrupo , Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Infecções Estreptocócicas/microbiologia , Penicilinas/farmacologia , Biofilmes , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
4.
Front Immunol ; 14: 1043109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911719

RESUMO

In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.


Assuntos
Adjuvantes de Vacinas , Vacinas , Humanos , Imunização , Vacinação , Adjuvantes Imunológicos
5.
Plant Signal Behav ; : 2030082, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129079

RESUMO

Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.

6.
Environ Microbiol ; 24(2): 689-706, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34227231

RESUMO

Iron (Fe) is a micronutrient required for plant growth and development; however, most Fe forms in soil are not readily available to plants, resulting in low Fe contents in plants and, thereby, causing Fe deficiency in humans. Biofortification through plant-fungal co-cultivation might be a sustainable approach to increase crop Fe contents. Therefore, we aimed to examine the role of a Piriformospora indica Fe transporter on rice Fe uptake under low Fe conditions. A high-affinity Fe transporter (PiFTR) from P. indica was identified and functionally characterized. PiFTR fulfilled all criteria expected of a functional Fe transporter under Fe-limited conditions. Additionally, PiFTR expression was induced when P. indica was grown under low Fe conditions, and PiFTR complemented a yeast mutant lacking Fe transport. A knockdown (KD) P. indica strain was created via RNA interference to understand the physiological role of PiFTR. We observed that the KD-PiFTR-P. indica strain transported a significantly lower amount of Fe to colonized rice (Oryza sativa) than the wild type (WT) P. indica. WT P. indica-colonized rice plants were healthier and performed significantly better than KD-PiFTR-P. indica-colonized rice plants. Our study offers potential avenues for an agronomically sound amelioration of plant growth in low Fe environments.


Assuntos
Basidiomycota , Oryza , Basidiomycota/metabolismo , Humanos , Ferro/metabolismo , Oryza/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia
7.
Bio Protoc ; 12(24)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36618091

RESUMO

Group A streptococcus (GAS) is a Gram-positive human pathogen that causes invasive infections with mild to life-threatening severity, like toxic shock syndrome, rheumatic heart disease, and necrotizing fasciitis (NF). NF is characterized by a clinical presentation of widespread tissue destruction due to the rapid spread of GAS infection into fascial planes. Despite quick medical interventions, mortality from NF is high. The early onset of the disease is difficult to diagnose because of non-specific clinical symptoms. Moreover, the unavailability of an effective vaccine against GAS warrants a genuine need for alternative treatments against GAS NF. One endoplasmic reticulum stress signaling pathway (PERK pathway) gets triggered in the host upon GAS infection. Bacteria utilize asparagine release as an output of this pathway for its pathogenesis. We reported that the combination of sub-cutaneous (SC) and intraperitoneal (IP) administration of PERK pathway inhibitors (GSK2656157 and ISRIB) cures local as well as systemic GAS infection in a NF murine model, by reducing asparagine release at the infection site. This protocol's methodology is detailed below. This protocol was validated in: Sci Transl Med (2021), DOI: 10.1126/scitranslmed.abd7465.

8.
Sci Transl Med ; 13(605)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349034

RESUMO

Group A streptococcus (GAS) is among the top 10 causes of mortality from an infectious disease, producing mild to invasive life-threatening manifestations. Necrotizing fasciitis (NF) is characterized by a rapid GAS spread into fascial planes followed by extensive tissue destruction. Despite prompt treatments of antibiotic administration and tissue debridement, mortality from NF is still high. Moreover, there is no effective vaccine against GAS, and early diagnosis of NF is problematic because its clinical presentations are not specific. Thus, there is a genuine need for effective treatments against GAS NF. Previously, we reported that GAS induces endoplasmic reticulum (ER) stress to gain asparagine from the host. Here, we demonstrate that GAS-mediated asparagine induction and release occur through the PERK-eIF2α-ATF4 branch of the unfolded protein response. Inhibitors of PERK or integrated stress response (ISR) blocked the formation and release of asparagine by infected mammalian cells, and exogenously added asparagine overcame this inhibition. Moreover, in a murine model of NF, we show that the inhibitors minimized mortality when mice were challenged with a lethal dose of GAS and reduced bacterial counts and lesion size when mice were challenged with a sublethal dose. Immunohistopathology studies demonstrated that PERK/ISR inhibitors protected mice by enabling neutrophil infiltration into GAS-infected fascia and reducing the pro-inflammatory response that causes tissue damage. Inhibitor treatment was also effective in mice when started at 12 hours after infection. We conclude that host metabolic alteration induced by PERK or ISR inhibitors is a promising therapeutic strategy to treat highly invasive GAS infections.


Assuntos
Fasciite Necrosante , Infecções Estreptocócicas , Animais , Asparagina , Fasciite Necrosante/tratamento farmacológico , Camundongos , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes , Resposta a Proteínas não Dobradas
10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34135124

RESUMO

Phosphate is an indispensable metabolite in a wide variety of cells and is involved in nucleotide and lipid synthesis, signaling, and chemical energy storage. Proton-coupled phosphate transporters within the major facilitator family are crucial for phosphate uptake in plants and fungi. Similar proton-coupled phosphate transporters have been found in different protozoan parasites that cause human diseases, in breast cancer cells with elevated phosphate demand, in osteoclast-like cells during bone reabsorption, and in human intestinal Caco2BBE cells for phosphate homeostasis. However, the mechanism of proton-driven phosphate transport remains unclear. Here, we demonstrate in a eukaryotic, high-affinity phosphate transporter from Piriformospora indica (PiPT) that deprotonation of aspartate 324 (D324) triggers phosphate release. Quantum mechanics/molecular mechanics molecular dynamics simulations combined with free energy sampling have been employed here to identify the proton transport pathways from D324 upon the transition from the occluded structure to the inward open structure and phosphate release. The computational insights so gained are then corroborated by studies of D45N and D45E amino acid substitutions via mutagenesis experiments. Our findings confirm the function of the structurally predicted cytosolic proton exit tunnel and suggest insights into the role of the titratable phosphate substrate.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Prótons , Cristalografia por Raios X , Citosol/metabolismo , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Mutagênese , Proteínas de Transporte de Fosfato/química , Fosfatos/metabolismo , Conformação Proteica , Força Próton-Motriz
11.
Front Immunol ; 12: 648710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868285

RESUMO

The global rise of antibiotic-resistant strains of Salmonella has necessitated the development of alternative therapeutic strategies. Recent studies have shown that targeting host factors may provide an alternative approach for the treatment of intracellular pathogens. Host-directed therapy (HDT) modulates host cellular factors that are essential to support the replication of the intracellular pathogens. In the current study, we identified Gefitinib as a potential host directed therapeutic drug against Salmonella. Further, using the proteome analysis of Salmonella-infected macrophages, we identified EGFR, a host factor, promoting intracellular survival of Salmonella via mTOR-HIF-1α axis. Blocking of EGFR, mTOR or HIF-1α inhibits the intracellular survival of Salmonella within the macrophages and in mice. Global proteo-metabolomics profiling indicated the upregulation of host factors predominantly associated with ATP turn over, glycolysis, urea cycle, which ultimately promote the activation of EGFR-HIF1α signaling upon infection. Importantly, inhibition of EGFR and HIF1α restored both proteomics and metabolomics changes caused by Salmonella infection. Taken together, this study identifies Gefitinib as a host directed drug that holds potential translational values against Salmonella infection and might be useful for the treatment of other intracellular infections.


Assuntos
Gefitinibe/farmacologia , Metabolômica/métodos , Proteômica/métodos , Infecções por Salmonella/prevenção & controle , Salmonella/efeitos dos fármacos , Animais , Células Cultivadas , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/imunologia , Inibidores de Proteínas Quinases/farmacologia , Salmonella/imunologia , Salmonella/fisiologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1
12.
Plant Cell ; 33(4): 1268-1285, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793849

RESUMO

A deficiency of the essential macronutrient sulfur leads to stunted plant growth and yield loss; however, an association with a symbiotic fungus can greatly improve nutrient uptake by the host plant. Here, we identified and functionally characterized a high-affinity sulfate transporter from the endophytic fungus Serendipita indica. SiSulT fulfills all the criteria expected of a functional sulfate transporter responding to sulfur limitation: SiSulT expression was induced when S. indica was grown under low-sulfate conditions, and heterologous expression of SiSulT complemented a yeast mutant lacking sulfate transport. We generated a knockdown strain of SiSulT by RNA interference to investigate the consequences of the partial loss of this transporter for the fungus and the host plant (maize, Zea mays) during colonization. Wild-type (WT) S. indica, but not the knockdown strain (kd-SiSulT), largely compensated for low-sulfate availability and supported plant growth. Colonization by WT S. indica also allowed maize roots to allocate precious resources away from sulfate assimilation under low-sulfur conditions, as evidenced by the reduction in expression of most sulfate assimilation genes. Our study illustrates the utility of the endophyte S. indica in sulfur nutrition research and offers potential avenues for agronomically sound amelioration of plant growth in low-sulfate environments.


Assuntos
Basidiomycota/fisiologia , Transportadores de Sulfato/metabolismo , Enxofre/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Cultura Axênica , Basidiomycota/metabolismo , Transporte Biológico , Cromatos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Micologia/métodos , Filogenia , Interferência de RNA , Transportadores de Sulfato/genética , Sulfatos/metabolismo , Leveduras/genética , Zea mays/metabolismo
13.
World J Microbiol Biotechnol ; 37(4): 67, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33748926

RESUMO

Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.


Assuntos
Vacinas Bacterianas , Desenvolvimento de Medicamentos , Bactérias , Biologia Computacional , Genômica , Humanos , Imunização , Proteômica
14.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272988

RESUMO

Cotton is an important cash crop for both the Indian economy and rural livelihoods. In the present study, metagenomic analysis is used to characterize microbial diversity in cotton rhizosphere soil from the Alwar district, located in the semiarid northeast region of the state of Rajasthan in India.

16.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184155

RESUMO

The Okhla landfill site is consistently in the news for having pollution levels higher than the city average. Here, we report the taxonomic characterization of the microbial diversity of Okhla landfill solid waste. The metagenome analyses revealed the microbial and metabolic diversity of the site.

17.
Microorganisms ; 8(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233415

RESUMO

Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.

18.
Nat Commun ; 11(1): 3545, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669564

RESUMO

Group A Streptococcus (GAS) infection causes a range of diseases, but vaccine development is hampered by the high number of serotypes. Here, using reverse vaccinology the authors identify SPy_2191 as a cross-protective vaccine candidate. From 18 initially identified surface proteins, only SPy_2191 is conserved, surface-exposed and inhibits both GAS adhesion and invasion. SPy_2191 immunization in mice generates bactericidal antibodies resulting in opsonophagocytic killing of prevalent and invasive GAS serotypes of different geographical regions, including M1 and M49 (India), M3.1 (Israel), M1 (UK) and M1 (USA). Resident splenocytes show higher interferon-γ and tumor necrosis factor-α secretion upon antigen re-stimulation, suggesting activation of cell-mediated immunity. SPy_2191 immunization significantly reduces streptococcal load in the organs and confers ~76-92% protection upon challenge with invasive GAS serotypes. Further, it significantly suppresses GAS pharyngeal colonization in mice mucosal infection model. Our findings suggest that SPy_2191 can act as a universal vaccine candidate against GAS infections.


Assuntos
Proteínas de Bactérias/imunologia , Proteção Cruzada/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Aderência Bacteriana/imunologia , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Humanos , Imunogenicidade da Vacina , Camundongos , Testes de Neutralização , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sorogrupo , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
19.
Front Microbiol ; 9: 3231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687249

RESUMO

Magnesium (Mg) is a crucial macronutrient required for the regular growth of plants. Here we report the identification, isolation and functional characterization of Mg-transporter PiMgT1 in root endophytic fungus Piriformospora indica. We also report the role of P. indica in the improvement of the Mg nutrition of the plant particularly under Mg deficiency condition. Protein BLAST (BLASTp) for conserved domains analysis showed that PiMgT1 belong to CorA like protein family of bacteria. We have also observed the presence of conserved 'GMN' signature sequence which suggests that PiMgT1 belongs to Mg transporter family. Phylogenetic analysis revealed that PiMgT1 clustered among fungal CorA family members nearer to basidiomycetes. Functionality of PiMgT1 was confirmed by complementation of a yeast magnesium transporter mutant CM66. We have observed that PiMgT1 restored the growth of mutant and showed comparable growth with that of WT. We found statistically significant (p < 0.05) two fold increase in the total intracellular Mg content of mutant complemented with PiMgT1 as compared to the mutant. These observations suggest that PiMgT1 is actively involved in Mg uptake by the fungus and may be helping in the nutritional status of the host plant.

20.
Sci Rep ; 7(1): 13553, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051515

RESUMO

Piriformospora indica, a root endophytic fungus, promotes growth of the economically important chickpea plant (Cicer arietinum Linn.) and protects it against the pathogenic fungus Botrytis cinerea. Biomass and root development were found to be significantly improved in chickpea plants colonized with P. indica as compared to the plants grown without P. indica as well as from the plants infected with the B. cinerea. Our PCR analyses showed that gradual increase in the colonization of P. indica in the plants result in the inhibition of the colonization of B. cinerea. P. indica colonized plants showed increased antioxidant enzyme activities. Interestingly, there were pronounced decrease in the antioxidant enzyme activities in shoots infected with B. cinerea and colonized with P. indica in alternate and simultaneous mode as compared to plants infected with B. cinerea alone. We conclude that P. indica helps plants to overcome the disease load by enhancing antioxidant enzyme defense system. Our data suggest that, bio-protective action of P. indica might be mediated via systemic induction of antioxidant defense in the host plants.


Assuntos
Antioxidantes/metabolismo , Basidiomycota/fisiologia , Botrytis/patogenicidade , Cicer/metabolismo , Antibiose , Basidiomycota/crescimento & desenvolvimento , Catalase/metabolismo , Cicer/microbiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...