Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295815

RESUMO

Natural bioactive compounds are proposed as alternatives in mitigating obesity-associated skeletal muscle dysfunction. The objective of this study was to test the hypothesis that the combination of geranylgeraniol (GGOH) and green tea polyphenols (GTPs) can alleviate high-fat-diet (HFD)-induced muscle atrophy and alter gut microbiome composition. Male C57BL/6J mice fed an HFD were assigned to four groups (12 mice each) in a 2 (no GGOH vs. 400 mg GGOH/kg diet) × 2 (no GTPs vs. 0.5% weight/volume GTPs in water) factorial design. After 14 weeks of diet intervention, skeletal muscle and cecal samples were collected and examined. Compared to the control groups, the group that consumed a combination of GGOH and GTPs (GG + GTPs) had significantly decreased body and fat mass but increased skeletal muscle mass normalized by body weight and cross-sectional area. In soleus muscle, the GG + GTP diet increased citrate synthase activity but decreased lipid peroxidation. Gut microbiome beta-diversity analysis revealed a significant difference in the microbiome composition between diet groups. At the species level, the GG + GTP diet decreased the relative abundance of Dorea longicatena, Sporobacter termitidis, and Clostridium methylpentosum, and increased that of Akkermansia muciniphila and Subdoligranulum variabile. These results suggest that the addition of GGOH and GTPs to an HFD alleviates skeletal muscle atrophy, which is associated with changes in the gut microbiome composition.

2.
J Nutr Biochem ; 67: 36-43, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852322

RESUMO

Skeletal muscle is the major site for glucose uptake and thus plays an important role in initiating insulin resistance in type 2 diabetes mellitus. This study evaluated the effects of tocotrienols (TT) and green tea polyphenols (GTP) individually or in combination on glucose homeostasis and skeletal muscle metabolism in obese mice with insulin resistance and elevation of blood glucose. Forty-eight male mice were fed a high-fat diet and assigned to 4 groups in a 2 (no TT vs. 400 mg TT/kg diet) × 2 (no GTP vs. 0.5% vol/wt GTP in water) for 14 weeks. Both GTP and TT improved area under curve of insulin intolerance; while GTP increased serum insulin levels in obese mice, probably due to the addition of sweetener in drinking water. An interaction (TT×GTP) was observed in glucose tolerance test, total pancreas insulin concentration, and citrate synthase activity of soleus in mice. Neither TT nor GTP affected insulin and glucagon protein expression in pancreas based on immunohistochemistry. Both TT and GTP individually increased soleus muscle weight of mice; while only GTP increased gastrocnemius muscle weight of mice. The TT+GTP group had the greatest gastrocnemius muscle cross sectional area than other groups. GTP, not TT, induced cytochrome c oxidase activity and reduced thiobarbituric acid reactive substances levels in soleus muscle. Our results suggest that TT and GTP, individually or synergistically have the potential to improve skeletal muscle metabolism in obese mice by improving glucose homeostasis, reducing lipid peroxidation, and increasing rate limiting enzymes of oxidative phosphorylation.


Assuntos
Bixaceae/química , Carotenoides/química , Glucose/metabolismo , Músculo Esquelético/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis/farmacologia , Chá/química , Animais , Ingestão de Alimentos/efeitos dos fármacos , Enzimas/metabolismo , Intolerância à Glucose/dietoterapia , Homeostase/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/dietoterapia , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Tocotrienóis/farmacologia
3.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28292876

RESUMO

Maternal exercise during pregnancy has been shown to improve the long-term health of offspring in later life. Mitochondria are important organelles for maintaining adequate heart function, and mitochondrial dysfunction is linked to cardiovascular disease. However, the effects of maternal exercise during pregnancy on mitochondrial biogenesis in hearts are not well understood. Thus, the purpose of this study was to test the hypothesis that mitochondrial gene expression in fetal myocardium would be upregulated by maternal exercise. Twelve-week-old female C57BL/6 mice were divided into sedentary and exercise groups. Mice in the exercise group were exposed to a voluntary cage-wheel from gestational day 1 through 17. Litter size and individual fetal weights were taken when pregnant dams were sacrificed at 17 days of gestation. Three to four hearts from the same group were pooled to study gene expression, protein expression, and enzyme activity. There were no significant differences in litter size, sex distribution, and average fetal body weight per litter between sedentary and exercised dams. Genes encoding mitochondrial biogenesis and dynamics, including nuclear respiratory factor-1 (Nrf1), Nrf2, and dynamin-related GTPase termed mitofusin-2 (Mfn2) were significantly upregulated in the fetal hearts from exercised dams. Cytochrome c oxidase activity and ATP production were significantly increased, while the hydrogen peroxide level was significantly decreased in the fetal hearts by maternal exercise. Our results demonstrate that maternal exercise initiated at day 1 of gestation could transfer the positive mitochondrial phenotype to fetal hearts.


Assuntos
Coração Fetal/enzimologia , Expressão Gênica , Genes Mitocondriais , Mitocôndrias/genética , Condicionamento Físico Animal/fisiologia , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA