Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BJU Int ; 134(1): 110-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587276

RESUMO

OBJECTIVE: To report the protocol of a study evaluating the efficacy of transdermal oestradiol (E2) gel in reducing the adverse effects of androgen deprivation therapy (ADT), specifically on sexual function, and to assess the utility of E2 in combination with supervised exercise. STUDY DESIGN AND METHODS: The primary endpoint of this open-label Phase IIA randomized controlled trial is the efficacy of transdermal E2 gel. Secondary endpoints include: (i) the occurrence of ADT-induced adverse effects; (ii) the safety and tolerability of E2; (iii) the impact of E2 with or without exercise on physical, physiological, muscle, and systemic biomarkers; and (iv) quality of life. The trial will recruit high-risk PCa patients (n = 310) undergoing external beam radiation therapy with adjuvant subcutaneous ADT. Participants will be stratified and randomized in a 1:1 ratio to either the E2 + ADT arm or the ADT-only control arm. Additionally, a subset of patients (n = 120) will be randomized into a supervised exercise programme. RESULTS: The primary outcome is assessed according to the efficacy of E2 in mitigating the deterioration of Expanded Prostate Cancer Index Composite sexual function domain scores. Secondary outcomes are assessed according to the occurrence of ADT-induced adverse effects, safety and tolerability of E2, impact of E2 with or without exercise on physical performance, body composition, bone mineral density, muscle size, systematic biomarkers, and quality of life. CONCLUSION: The ESTRACISE study's innovative design can offer novel insights about the benefits of E2 gel, and the substudy can reinforce the benefits resistance training and deliver valuable new novel insights into the synergistic benefits of E2 gel and exercise, which are currently unknown. TRIAL REGISTRATION: The protocol has been registered in euclinicaltrials.eu (2023-504704-28-00) and in clinicaltrials.gov (NCT06271551).


Assuntos
Administração Cutânea , Antagonistas de Androgênios , Estradiol , Terapia por Exercício , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Estradiol/administração & dosagem , Terapia por Exercício/métodos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Terapia Combinada , Ensaios Clínicos Fase II como Assunto
2.
Cancer Prev Res (Phila) ; 17(6): 243-254, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38551987

RESUMO

Lynch syndrome (LS) is the most common autosomal dominant cancer syndrome and is characterized by high genetic cancer risk modified by lifestyle factors. This study explored whether a circulating miRNA (c-miR) signature predicts LS cancer incidence within a 4-year prospective surveillance period. To gain insight how lifestyle behavior could affect LS cancer risk, we investigated whether the cancer-predicting c-miR signature correlates with known risk-reducing factors such as physical activity, body mass index (BMI), dietary fiber, or NSAID usage. The study included 110 c-miR samples from LS carriers, 18 of whom were diagnosed with cancer during a 4-year prospective surveillance period. Lasso regression was utilized to find c-miRs associated with cancer risk. Individual risk sum derived from the chosen c-miRs was used to develop a model to predict LS cancer incidence. This model was validated using 5-fold cross-validation. Correlation and pathway analyses were applied to inspect biological functions of c-miRs. Pearson correlation was used to examine the associations of c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 were identified as cancer predictors by Lasso, and their risk sum score associated with higher likelihood of cancer incidence (HR 2.72, 95% confidence interval: 1.64-4.52, C-index = 0.72). In cross-validation, the model indicated good concordance with the average C-index of 0.75 (0.6-1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p targeted genes involved in cancer-associated biological pathways. The c-miR risk sum score correlated with BMI (r = 0.23, P < 0.01). In summary, BMI-associated c-miRs predict LS cancer incidence within 4 years, although further validation is required. PREVENTION RELEVANCE: The development of cancer risk prediction models is key to improving the survival of patients with LS. This pilot study describes a serum miRNA signature-based risk prediction model that predicts LS cancer incidence within 4 years, although further validation is required.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Neoplasias Colorretais Hereditárias sem Polipose , Humanos , Projetos Piloto , Feminino , Incidência , Masculino , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/sangue , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , MicroRNA Circulante/sangue , Adulto , Idoso , MicroRNAs/sangue , MicroRNAs/genética , Prognóstico , Fatores de Risco , Estilo de Vida , Seguimentos
3.
Cancer Metab ; 12(1): 4, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317210

RESUMO

Circulating metabolites systemically reflect cellular processes and can modulate the tissue microenvironment in complex ways, potentially impacting cancer initiation processes. Genetic background increases cancer risk in individuals with Lynch syndrome; however, not all carriers develop cancer. Various lifestyle factors can influence Lynch syndrome cancer risk, and lifestyle choices actively shape systemic metabolism, with circulating metabolites potentially serving as the mechanical link between lifestyle and cancer risk. This study aims to characterize the circulating metabolome of Lynch syndrome carriers, shedding light on the energy metabolism status in this cancer predisposition syndrome.This study consists of a three-group cross-sectional analysis to compare the circulating metabolome of cancer-free Lynch syndrome carriers, sporadic colorectal cancer (CRC) patients, and healthy non-carrier controls. We detected elevated levels of circulating cholesterol, lipids, and lipoproteins in LS carriers. Furthermore, we unveiled that Lynch syndrome carriers and CRC patients displayed similar alterations compared to healthy non-carriers in circulating amino acid and ketone body profiles. Overall, cancer-free Lynch syndrome carriers showed a unique circulating metabolome landscape.This study provides valuable insights into the systemic metabolic landscape of Lynch syndrome individuals. The findings hint at shared metabolic patterns between cancer-free Lynch syndrome carriers and CRC patients.

4.
Cell Signal ; 113: 110958, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935340

RESUMO

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Assuntos
Neoplasias da Mama , Células Epiteliais , Feminino , Humanos , Animais , Camundongos , Células Epiteliais/metabolismo , Diferenciação Celular , Neoplasias da Mama/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Microambiente Tumoral
5.
Int J Cancer ; 152(5): 932-944, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282188

RESUMO

Circulating microRNAs (c-miRs) are small noncoding RNA molecules that migrate throughout the body and regulate gene expression. Global c-miR expression patterns (c-miRnomes) change with sporadic carcinogenesis and have predictive potential in early detection of cancers. However, there are no studies that have assessed whether c-miRnomes display similar potential in carriers of inherited pathogenic mismatch-repair gene variants (path_MMR), known as Lynch syndrome (LS), who are predisposed to highly increased cancer risk. Using high-throughput sequencing and bioinformatic approaches, we conducted an exploratory analysis to characterize systemic c-miRnomes of path_MMR carriers, sporadic rectal cancer patients and non-LS controls. We showed for the first time that cancer-free path_MMR carriers have a systemic c-miRnome of 40 differentially expressed c-miRs that can distinguish them from non-LS controls. The systemic c-miRnome of cancer-free path_MMR carriers also resembles the systemic c-miRnomes of cancer patients with or without path_MMR. Our pathway analysis linked the found differentially expressed c-miRs to carcinogenesis. A total of 508 putative target genes were identified for 32 out of 40 differentially expressed c-miRs, and 238 of them were enriched in cancer-related pathways. The most enriched c-miR-target genes include well-known oncogenes and tumor suppressor genes such as BCL2, AKT3, PIK3CA, KRAS, NRAS, CDKN1A and PIK3R1. Taken together, our findings suggest that LS and sporadic carcinogenesis share common biological pathways and alterations in these pathways can produce a c-miR signature which can track potential oncogenic stress in cancer-free path_MMR carriers. Therefore, c-miRs hold potential in monitoring the LS risk stratification patterns during clinical surveillance or cancer management.


Assuntos
MicroRNA Circulante , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias do Endométrio , Humanos , Feminino , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Fatores de Transcrição/genética , Neoplasias do Endométrio/genética , Carcinogênese , Reparo de Erro de Pareamento de DNA
6.
Methods Mol Biol ; 2394: 47-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094321

RESUMO

The interaction between cells and their surrounding microenvironment has a crucial role in determining cell fate. In many pathological conditions, the microenvironment drives disease progression as well as therapeutic resistance. A number of challenges arise for researchers examining these cell-microenvironment interactions: (1) Tissue microenvironments are combinatorial and dynamic systems, and in pathological situations like cancer, microenvironments become infamously chaotic and highly heterogeneous. (2) Cells exhibit heterogeneous phenotypes, and even rare cell subpopulations can have a substantial role in tissue homeostasis and disease progression. This chapter discusses technical aspects relevant to dissecting cell-microenvironment interaction using the Microenvironment Microarray (MEMA) platform, which is a cell-based functional high-throughput screening of interactions between cells and combinatorial microenvironments at the single-cell level. MEMA provides insights into how cell phenotype and function is elicited by microenvironmental components. In this chapter, we describe automating a high-throughput and high-resolution imaging pipeline for single-cell-resolution analysis.


Assuntos
Microambiente Celular , Análise em Microsséries , Análise de Célula Única , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/patologia , Microambiente Tumoral
7.
Curr Stem Cell Rep ; 7: 39-47, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777660

RESUMO

PURPOSE OF REVIEW: Cancer stem cells (CSCs) are increasingly understood to play a central role in tumor progression. Growing evidence implicates tumor microenvironments as a source of signals that regulate or even impose CSC states on tumor cells. This review explores points of integration for microenvironment-derived signals that are thought to regulate CSCs in carcinomas. RECENT FINDINGS: CSC states are directly regulated by the mechanical properties and extra cellular matrix (ECM) composition of tumor microenvironments that promote CSC growth and survival, which may explain some modes of therapeutic resistance. CSCs sense mechanical forces and ECM composition through integrins and other cell surface receptors, which then activate a number of intracellular signaling pathways. The relevant signaling events are dynamic and context-dependent. SUMMARY: CSCs are thought to drive cancer metastases and therapeutic resistance. Cells that are in CSC states and more differentiated states appear to be reversible and conditional upon the components of the tumor microenvironment. Signals imposed by tumor microenvironment are of a combinatorial nature, ultimately representing the integration of multiple physical and chemical signals. Comprehensive understanding of the tumor microenvironment-imposed signaling that maintains cells in CSC states may guide future therapeutic interventions.

8.
Nat Aging ; 1(9): 838-849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35187501

RESUMO

During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Feminino , Envelhecimento/genética , Mama/patologia , Mutação em Linhagem Germinativa/genética , Neoplasias da Mama/genética , Proteína BRCA1/genética , Proteína BRCA2/genética
9.
Front Cell Dev Biol ; 6: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719832

RESUMO

The existence of rare cancer cells that sporadically acquire drug-tolerance through epigenetic mechanisms is proposed as one mechanism that drives cancer therapy failure. Here we provide evidence that specific microenvironments impose non-sporadic expression of proteins related to epithelial plasticity and drug resistance. Microarrays of robotically printed combinatorial microenvironments of known composition were used to make cell-based functional associations between microenvironments, which were design-inspired by normal and tumor-burdened breast tissues, and cell phenotypes. We hypothesized that specific combinations of microenvironment constituents non-sporadically impose the induction of the AXL and cKIT receptor tyrosine kinase proteins, which are known to be involved in epithelial plasticity and drug-tolerance, in an isogenic human mammary epithelial cell (HMEC) malignant progression series. Dimension reduction analysis reveals type I collagen as a dominant feature, inducing expression of both markers in pre-stasis finite lifespan HMECs, and transformed non-malignant and malignant immortal cell lines. Basement membrane-associated matrix proteins, laminin-111 and type IV collagen, suppress AXL and cKIT expression in pre-stasis and non-malignant cells. However, AXL and cKIT are not suppressed by laminin-111 in malignant cells. General linear models identified key factors, osteopontin, IL-8, and type VIα3 collagen, which significantly upregulated AXL and cKIT, as well as a plasticity-related gene expression program that is often observed in stem cells and in epithelial-to-mesenchymal-transition. These factors are co-located with AXL-expressing cells in situ in normal and breast cancer tissues, and associated with resistance to paclitaxel. A greater diversity of microenvironments induced AXL and cKIT expression consistent with plasticity and drug-tolerant phenotypes in tumorigenic cells compared to normal or immortal cells, suggesting a reduced perception of microenvironment specificity in malignant cells. Microenvironment-imposed reprogramming could explain why resistant cells are seemingly persistent and rapidly adaptable to multiple classes of drugs. These results support the notion that specific microenvironments drive drug-tolerant cellular phenotypes and suggest a novel interventional avenue for preventing acquired therapy resistance.

10.
Biochem J ; 475(10): 1755-1772, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626161

RESUMO

Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epiderme/enzimologia , Hialuronan Sintases/metabolismo , Queratinócitos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Epiderme/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Receptores Purinérgicos P2Y2/genética , Transdução de Sinais
11.
Cell Rep ; 21(2): 533-545, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020637

RESUMO

Tumor microenvironments are a driver of resistance to anti-cancer drugs. Dissecting cell-microenvironment interactions into tractable units of study presents a challenge. Here, we assess the impact of hundreds of tumor-inspired microenvironments, in parallel, on lapatinib responses in four cancer cell lines. Combinations of ECM and soluble factors were printed on stiffness-tunable substrata to generate a collection of controlled microenvironments in which to explore cell-based functional responses. Proliferation, HER2 protein expression and phosphorylation, and morphology were measured in single cells. Using dimension reduction and linear modeling, the effects of microenvironment constituents were identified and then validated empirically. Each of the cell lines exhibits unique microenvironment-response patterns. Fibronectin, type IV collagen, and matrix rigidity are significant regulators of lapatinib resistance in HER2-amplified breast cancer cells. Small-molecule inhibitors were identified that could attenuate microenvironment-imposed resistance. Thus, we demonstrate a strategy to identify resistance- and sensitivity-driving microenvironments to improve the efficacy of anti-cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Análise de Célula Única/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Microambiente Tumoral , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Lapatinib , Porfirinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Verteporfina
12.
J Biol Chem ; 292(12): 4861-4872, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28188289

RESUMO

The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 µm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Uridina Trifosfato/metabolismo , Linhagem Celular , Glucuronosiltransferase/genética , Humanos , Hialuronan Sintases , Regulação para Cima
13.
Histochem Cell Biol ; 145(5): 531-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26821263

RESUMO

Previous observations of our research group showed that HAS2 and HAS3 overexpression in cultured cells induces the formation of long and numerous microvillus-like cell protrusions, which are present also in cultured cell types with naturally high hyaluronan secretion and the cell protrusions resemble those found in mesothelial cells. The aim of this study was to investigate whether these hyaluronan secreting, actin-dependent protrusions exist also in vivo. It was found that rat mesothelium in vivo is positive for hyaluronan and Has1-3. Also microvilli in rat mesothelium and live primary cultures of mesothelial cells were found to be hyaluronan positive, and the cells expressed all Has isoforms. Furthermore, ultrastructure of the cell protrusions in rat mesothelium was similar to that induced by overexpression of HAS2 and HAS3, and the number and orientation of actin filaments supporting the cell protrusions was identical. The results of this study show that HA-positive protrusions exist in vivo and support the idea that hyaluronan secretion from plasma membrane protrusions is a general process. This mechanism is potentially crucial for the normal function and maintenance of tissues and body fluids and may be utilized in many therapeutic applications.


Assuntos
Estruturas da Membrana Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Ácido Hialurônico/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
14.
J Biol Chem ; 290(19): 12379-93, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25809479

RESUMO

The proinflammatory cytokine interleukin-1ß (IL-1ß) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1ß turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1ß did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1ß caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1ß increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1ß (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1ß changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Epiderme/metabolismo , Receptores de Hialuronatos/metabolismo , Interleucina-1beta/metabolismo , Queratinócitos/citologia , Serina/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Éxons , Humanos , Ácido Hialurônico/química , Inflamação , Leucócitos/citologia , Microscopia Confocal , Microscopia de Fluorescência , Monócitos/citologia , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional
15.
Cell Rep ; 7(6): 1926-39, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24910432

RESUMO

Dysfunctional progenitor and luminal cells with acquired basal cell properties accumulate during human mammary epithelial aging for reasons not understood. Multipotent progenitors from women aged <30 years were exposed to a physiologically relevant range of matrix elastic modulus (stiffness). Increased stiffness causes a differentiation bias towards myoepithelial cells while reducing production of luminal cells and progenitor maintenance. Lineage representation in progenitors from women >55 years is unaffected by physiological stiffness changes. Efficient activation of Hippo pathway transducers YAP and TAZ is required for the modulus-dependent myoepithelial/basal bias in younger progenitors. In older progenitors, YAP and TAZ are activated only when stressed with extraphysiologically stiff matrices, which bias differentiation towards luminal-like phenotypes. In vivo YAP is primarily active in myoepithelia of younger breasts, but localization and activity increases in luminal cells with age. Thus, aging phenotypes of mammary epithelia may arise partly because alterations in Hippo pathway activation impair microenvironment-directed differentiation and lineage specificity.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/citologia , Células-Tronco/citologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Fatores Etários , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Mecanotransdução Celular/fisiologia , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
16.
J Biol Chem ; 289(26): 18569-81, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24847057

RESUMO

Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid induction of hyaluronan synthase 2 (HAS2), and an increase of hyaluronan synthesis. The up-regulation of HAS2 was associated with JAK2 and ERK1/2 activation, and specific Tyr(705) phosphorylation of transcription factor STAT3. Inhibition of JAK2, STAT3, or Gi-coupled receptors blocked the induction of HAS2 expression by UDP-Glc, the latter inhibitor suggesting that the signaling was triggered by the UDP-sugar receptor P2Y14. Chromatin immunoprecipitations demonstrated increased promoter binding of Tyr(P)(705)-STAT3 at the time of HAS2 induction. Interestingly, at the same time Ser(P)(727)-STAT3 binding to its response element regions in the HAS2 promoter was unchanged or decreased. UDP-Glc also stimulated keratinocyte migration, proliferation, and IL-8 expression, supporting a notion that UDP-Glc signals for epidermal inflammation, enhanced hyaluronan synthesis as an integral part of it.


Assuntos
Glucuronosiltransferase/genética , Ácido Hialurônico/biossíntese , Queratinócitos/metabolismo , Regiões Promotoras Genéticas , Receptores Purinérgicos P2/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Uridina Difosfato Glucose/metabolismo , Motivos de Aminoácidos , Movimento Celular , Glucuronosiltransferase/metabolismo , Humanos , Hialuronan Sintases , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Queratinócitos/enzimologia , Fosforilação , Ligação Proteica , Receptores Purinérgicos P2/genética , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Transdução de Sinais , Tirosina/química , Tirosina/genética , Regulação para Cima
17.
ACS Chem Biol ; 8(10): 2331-8, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23972127

RESUMO

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analogue of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analogue was activated intracellularly into UDP-4-deoxy-GlcNAc, and HS expression was inhibited up to ∼96% (IC50 = 16 µM). HS chain size was reduced, without detectable incorporation of the 4-deoxy analogue, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors such as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Microinjection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All of these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis, which hampers pro-angiogenic signaling and neo-vessel formation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heparitina Sulfato/genética , Neovascularização Patológica/fisiopatologia , Uridina Difosfato N-Acetilglicosamina/análogos & derivados , Uridina Difosfato N-Acetilglicosamina/farmacologia , Animais , Galinhas , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Heparitina Sulfato/biossíntese , Heparitina Sulfato/metabolismo , Ácido Idurônico/química , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra
18.
Wound Repair Regen ; 21(2): 247-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23464634

RESUMO

Wound healing is a highly regulated process starting from coagulation and ending in tissue remodeling. The end result varies from perfectly restored tissue, such as in early fetal skin, to scars in adults. The balanced repair process is frequently disturbed by local or systemic factors, like infections and diabetes. A rapid increase of hyaluronan is an inherent feature of wounds and is associated with tissue swelling, epithelial and mesenchymal cell migration and proliferation, and induction of cytokine signaling. Hyaluronan extending from cell surface into structures called cables can trap leukocytes and platelets and change their functions. All these features of hyaluronan modulate inflammation. The present data show that mannose, a recently described inhibitor of hyaluronan synthesis, inhibits dermal fibroblast invasion and prevents the enhanced leukocyte binding to hyaluronan that takes place in cells treated with an inflammatory mediator interleukin-1ß. Mannose also reduced hyaluronan in subcutaneous sponge granulation tissue, a model of skin wound, and suppressed its leukocyte recruitment and tissue growth. Mannose thus seems to suppress wounding-induced inflammation in skin by attenuating hyaluronan synthesis.


Assuntos
Antifibrinolíticos/farmacologia , Tecido de Granulação/fisiopatologia , Ácido Hialurônico/metabolismo , Leucócitos/metabolismo , Manose/farmacologia , Pele/fisiopatologia , Cicatrização , Ferimentos e Lesões/fisiopatologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Tecido de Granulação/efeitos dos fármacos , Inflamação/fisiopatologia , Interleucina-1beta/metabolismo , Masculino , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Pele/lesões , Ferimentos e Lesões/tratamento farmacológico
19.
J Biol Chem ; 288(8): 5973-83, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23303191

RESUMO

Mammals have three homologous genes encoding proteins with hyaluronan synthase activity (Has1-3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid. To compare the properties of these isoenzymes, COS-1 cells, with minor endogenous hyaluronan synthesis, were transfected with human Has1-3 isoenzymes. HAS1 was almost unable to secrete hyaluronan or form a hyaluronan coat, in contrast to HAS2 and HAS3. This failure of HAS1 to synthesize hyaluronan was compensated by increasing the cellular content of UDP-N-acetyl glucosamine by ∼10-fold with 1 mm glucosamine in the growth medium. Hyaluronan synthesis driven by HAS2 was less affected by glucosamine addition, and HAS3 was not affected at all. Glucose-free medium, leading to depletion of the UDP-sugars, markedly reduced hyaluronan synthesis by all HAS isoenzymes while raising its concentration from 5 to 25 mm had a moderate stimulatory effect. The results indicate that HAS1 is almost inactive in cells with low UDP-sugar supply, HAS2 activity increases with UDP-sugars, and HAS3 produces hyaluronan at high speed even with minimum substrate content. Transfected Has2 and particularly Has3 consumed enough UDP-sugars to reduce their content in COS-1 cells. Comparison of different human cell types revealed ∼50-fold differences in the content of UDP-N-acetylhexosamines and UDP-glucuronic acid, correlating with the expression level of Has1, suggesting cellular coordination between Has1 expression and the content of UDP-sugars.


Assuntos
Acetilglucosamina/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Difosfato de Uridina/química , Animais , Aorta/citologia , Células COS , Chlorocebus aethiops , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Humanos , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Inflamação , Isoenzimas , Modelos Biológicos , Neoplasias/enzimologia
20.
Histochem Cell Biol ; 137(1): 107-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072421

RESUMO

CD44 is a ubiquitous cell surface glycoprotein, involved in important cellular functions including cell adhesion, migration, and modulation of signals from cell surface receptors. While most of these CD44 functions are supposed to involve hyaluronan, relatively little is known about the contribution of CD44 to hyaluronan maintenance and organization on cell surface, and the role of CD44 in hyaluronan synthesis and catabolism. Blocking hyaluronan binding either by CD44 antibodies, CD44-siRNA or hyaluronan decasaccharides (but not hexasaccharides) removed most of the hyaluronan from the surfaces of both human (HaCaT) and mouse keratinocytes, resembling results on cells from CD44⁻/⁻ animals. In vitro, compromising CD44 function led to reduced and increased amounts, respectively, of intracellular and culture medium hyaluronan, and specific accumulation below the cells. In vivo, CD44-deficiency caused no marked differences in hyaluronan staining intensity or localization in the fetal skin or in adult ear skin, while tail epidermis showed a slight reduction in epidermal hyaluronan staining intensity. However, CD44-deficient tail skin challenged with retinoic acid or tape stripping revealed diffuse accumulation of hyaluronan in the superficial epidermal layers, normally negative for hyaluronan. Our data indicate that CD44 retains hyaluronan in the keratinocyte pericellular matrix, a fact that has not been shown unambiguously before, and that hyaluronan abundance in the absence of CD44 can result in hyaluronan trapping in abnormal locations possibly interfering there with normal differentiation and epidermal barrier function.


Assuntos
Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Receptores de Hialuronatos/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA