Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847154

RESUMO

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


Animals that reproduce sexually have organs called gonads, the ovaries and testes, which produce eggs and sperm. These organs, which are different in males and females, originate from the same cells during the development of the embryo. As a general rule, the chromosomal sex of an embryo, which gets determined at fertilization, leads to the activation and repression of specific genes. This in turn, controls whether the cells that will form the gonads will differentiate to develop testes or ovaries. Disruption of the key genes involved in the differentiation of the gonads can lead to fertility problems, and in some cases, it can cause the gonads to develop in the 'opposite' direction, resulting in a sex reversal. Identifying these genes is therefore essential to know how to maintain or restore fertility. DMRT1 is a gene that drives the differentiation of gonadal cells into the testicular pathway in several species of animals with backbones, including species of fish, frogs and birds. However, its role in mammals ­ where testis differentiation is driven by a different gene called SRY ­ is not well understood. Indeed, when DMRT1 is disrupted in male humans it leads to disorders of sex development, while disrupting this gene in male mice causes infertility. To obtain more information about the roles of DMRT1 in mammalian species, Dujardin et al. disrupted the gene in a third species of mammal: the rabbit. Dujardin et al. observed that chromosomally-male rabbits lacking DMRT1 developed ovaries instead of testes, showing that in rabbits, both SRY and DMRT1 are both required to produce testes. Additionally, this effect is similar to what is seen in humans, suggesting that rabbits may be a better model for human gonadal differentiation than mice are. Additionally, Dujardin et al. were also able to show that in female rabbits, lack of DMRT1 led to infertility, an effect that had not been previously described in other species. The results of Dujardin et al. may lead to better models for gonadal development in humans, involving DMRT1 in the differentiation of testes. Interestingly, they also suggest the possibility that mutations in this gene may be responsible for some cases of infertility in women. Overall, these findings indicate that DMRT1 is a key fertility gene.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Testículo , Animais , Feminino , Masculino , Coelhos , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Mamíferos/genética , Processos de Determinação Sexual/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Testículo/metabolismo
2.
Genes (Basel) ; 13(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36360307

RESUMO

Estrogens are steroid hormones produced by the aromatization of androgens by the aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as "female sex hormones", estrogen is also produced in the adult testes of many mammals, including humans. To better understand the function of estrogens in the male, we used the rabbit model which is an important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules. Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1-/- genetically modified rabbits were analyzed. CYP19A1-/- males showed decreased fertility with lower sperm count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA methylation was unchanged, while sperm parameters were affected as CYP19A1-/- males exhibited reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens could be involved in the spermatocyte-spermatid transition in the testis, and in the acquisition of sperm motility in the epididymis.


Assuntos
Sêmen , Testículo , Humanos , Animais , Masculino , Coelhos , Feminino , Testículo/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Estrogênios/metabolismo , Mamíferos
3.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614143

RESUMO

AROMATASE is encoded by the CYP19A1 gene and is the cytochrome enzyme responsible for estrogen synthesis in vertebrates. In most mammals, a peak of CYP19A1 gene expression occurs in the fetal XX gonad when sexual differentiation is initiated. To elucidate the role of this peak, we produced 3 lines of TALEN genetically edited CYP19A1 knockout (KO) rabbits that were devoid of any estradiol production. All the KO XX rabbits developed as females with aberrantly small ovaries in adulthood, an almost empty reserve of primordial follicles, and very few large antrum follicles. Ovulation never occurred. Our histological, immunohistological, and transcriptomic analyses showed that the estradiol surge in the XX fetal rabbit gonad is not essential to its determination as an ovary, or for meiosis. However, it is mandatory for the high proliferation and differentiation of both somatic and germ cells, and consequently for establishment of the ovarian reserve.


Assuntos
Estrogênios/metabolismo , Ovário/embriologia , Ovário/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Hormônio Antimülleriano/metabolismo , Diferenciação Celular , Proliferação de Células , Família 19 do Citocromo P450/metabolismo , Estradiol/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas , Mutação INDEL , Folículo Ovariano/fisiologia , Ovulação , Fenótipo , Coelhos , Diferenciação Sexual/fisiologia , Testosterona/metabolismo
4.
Atherosclerosis ; 320: 10-18, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497863

RESUMO

BACKGROUND AND AIMS: Apolipoprotein (apo) C1 is a 6.6 kDa protein associated with HDL and VLDL. ApoC1 alters triglyceride clearance, and it also favors cholesterol accumulation in HDL, especially by inhibiting CETP in human plasma. Apart from studies in mice, which lack CETP, the impact of apoC1 on atherosclerosis in animal models expressing CETP, like in humans, is not known. This study aimed at determining the net effect of human apoC1 on atherosclerosis in rabbits, a species with naturally high CETP activity but with endogenous apoC1 without CETP inhibitory potential. METHODS: Rabbits expressing a human apoC1 transgene (HuApoC1Tg) were generated and displayed significant amounts of human apoC1 in plasma. RESULTS: After cholesterol feeding, atherosclerosis lesions were significantly less extensive (-22%, p < 0.05) and HDL displayed a reduced ability to serve as CETP substrates (-25%, p < 0.05) in HuApoC1Tg rabbits than in WT littermates. It was associated with rises in plasma HDL cholesterol level and PON-1 activity, and a decrease in the plasma level of the lipid oxidation markers 12(S)-HODE and 8(S)HETE. In chow-fed animals, the level of HDL-cholesterol was also significantly higher in HuApoC1Tg than in WT animals (0.83 ± 0.11 versus 0.73 ± 0.11 mmol/L, respectively, p < 0.05), and it was associated with significantly lower CETP activity (cholesteryl ester transfer rate, -10%, p < 0.05; specific CETP activity, -14%, p < 0.05). CONCLUSIONS: Constitutive expression of fully functional human apoC1 in transgenic rabbit attenuates atherosclerosis. It was found to relate, at least in part, to the inhibition of plasma CETP activity and to alterations in plasma HDL.


Assuntos
Apolipoproteína C-I , Aterosclerose , Animais , Apolipoproteína C-I/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Coelhos
5.
Sci Adv ; 6(21): eaaz1261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494737

RESUMO

In mammals, the timing of meiosis entry is regulated by signals from the gonadal environment. All-trans retinoic acid (ATRA) signaling is considered the key pathway that promotes Stra8 (stimulated by retinoic acid 8) expression and, in turn, meiosis entry. This model, however, is debated because it is based on analyzing the effects of exogenous ATRA on ex vivo gonadal cultures, which not accurately reflects the role of endogenous ATRA. Aldh1a1 and Aldh1a2, two retinaldehyde dehydrogenases synthesizing ATRA, are expressed in the mouse ovaries when meiosis initiates. Contrary to the present view, here, we demonstrate that ATRA-responsive cells are scarce in the ovary. Using three distinct gene deletion models for Aldh1a1;Aldh1a2;Aldh1a3, we show that Stra8 expression is independent of ATRA production by ALDH1A proteins and that germ cells progress through meiosis. Together, these data demonstrate that ATRA signaling is dispensable for instructing meiosis initiation in female germ cells.


Assuntos
Meiose , Ovário , Animais , Feminino , Células Germinativas/metabolismo , Mamíferos/metabolismo , Camundongos , Ovário/metabolismo , Proteínas/metabolismo , Tretinoína/farmacologia
6.
Sci Rep ; 10(1): 4992, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193429

RESUMO

Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.


Assuntos
Desenvolvimento Embrionário/genética , Fertilidade/genética , Edição de Genes , Folículo Ovariano/fisiologia , RNA Longo não Codificante/fisiologia , Animais , Feminino , Expressão Gênica , Folículo Ovariano/metabolismo , Ovulação/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Coelhos
7.
Eur Heart J ; 40(10): 842-853, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30496390

RESUMO

AIMS: Short-QT syndrome 1 (SQT1) is an inherited channelopathy with accelerated repolarization due to gain-of-function in HERG/IKr. Patients develop atrial fibrillation, ventricular tachycardia (VT), and sudden cardiac death with pronounced inter-individual variability in phenotype. We generated and characterized transgenic SQT1 rabbits and investigated electrical remodelling. METHODS AND RESULTS: Transgenic rabbits were generated by oocyte-microinjection of ß-myosin-heavy-chain-promoter-KCNH2/HERG-N588K constructs. Short-QT syndrome 1 and wild type (WT) littermates were subjected to in vivo ECG, electrophysiological studies, magnetic resonance imaging, and ex vivo action potential (AP) measurements. Electrical remodelling was assessed using patch clamp, real-time PCR, and western blot. We generated three SQT1 founders. QT interval was shorter and QT/RR slope was shallower in SQT1 than in WT (QT, 147.8 ± 2 ms vs. 166.4 ± 3, P < 0.0001). Atrial and ventricular refractoriness and AP duration were shortened in SQT1 (vAPD90, 118.6 ± 5 ms vs. 154.4 ± 2, P < 0.0001). Ventricular tachycardia/fibrillation (VT/VF) inducibility was increased in SQT1. Systolic function was unaltered but diastolic relaxation was enhanced in SQT1. IKr-steady was increased with impaired inactivation in SQT1, while IKr-tail was reduced. Quinidine prolonged/normalized QT and action potential duration (APD) in SQT1 rabbits by reducing IKr. Diverse electrical remodelling was observed: in SQT1, IK1 was decreased-partially reversing the phenotype-while a small increase in IKs may partly contribute to an accentuation of the phenotype. CONCLUSION: Short-QT syndrome 1 rabbits mimic the human disease phenotype on all levels with shortened QT/APD and increased VT/VF-inducibility and show similar beneficial responses to quinidine, indicating their value for elucidation of arrhythmogenic mechanisms and identification of novel anti-arrhythmic strategies.


Assuntos
Potenciais de Ação , Arritmias Cardíacas , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/anormalidades , Cardiopatias Congênitas , Ventrículos do Coração/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Antiarrítmicos/farmacologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Fenótipo , Quinidina/farmacologia , Coelhos
8.
PLoS One ; 9(9): e106655, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216115

RESUMO

In the search of new strategies to fight against obesity, we targeted a gene pathway involved in energy uptake. We have thus investigated the APOB mRNA editing protein (APOBEC1) gene pathway that is involved in fat absorption in the intestine. The APOB gene encodes two proteins, APOB100 and APOB48, via the editing of a single nucleotide in the APOB mRNA by the APOBEC1 enzyme. The APOB48 protein is mandatory for the synthesis of chylomicrons by intestinal cells to transport dietary lipids and cholesterol. We produced transgenic rabbits expressing permanently and ubiquitously a small hairpin RNA targeting the rabbit APOBEC1 mRNA. These rabbits exhibited a moderately but significantly reduced level of APOBEC1 gene expression in the intestine, a reduced level of editing of the APOB mRNA, a reduced level of synthesis of chylomicrons after a food challenge, a reduced total mass of body lipids and finally presented a sustained lean phenotype without any obvious physiological disorder. Interestingly, no compensatory mechanism opposed to the phenotype. These lean transgenic rabbits were crossed with transgenic rabbits expressing in the intestine the human APOBEC1 gene. Double transgenic animals did not present any lean phenotype, thus proving that the intestinal expression of the human APOBEC1 transgene was able to counterbalance the reduction of the rabbit APOBEC1 gene expression. Thus, a moderate reduction of the APOBEC1 dependent editing induces a lean phenotype at least in the rabbit species. This suggests that the APOBEC1 gene might be a novel target for obesity treatment.


Assuntos
Citidina Desaminase/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Interferência de RNA , Redução de Peso , Desaminase APOBEC-1 , Animais , Animais Geneticamente Modificados , Apolipoproteína B-48/sangue , Sequência de Bases , Colesterol/sangue , Dieta Hiperlipídica , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Fenótipo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Coelhos , Transgenes , Triglicerídeos/sangue
9.
J Dev Orig Health Dis ; 5(2): 88-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24847695

RESUMO

Alterations to the metabolic environment in utero can have an impact on subsequent female reproductive performance. Here, we used a model of rabbits receiving a high-fat diet (H diet; 7.7% fat and 0.2% cholesterol) or a control diet (C diet; 1.8% fat, no cholesterol) from 10 weeks of age up to mating at 27 weeks and throughout gestation and lactation. At weaning at 5 weeks of age, F1 female offspring were placed on either C or H diet, resulting in a total of four groups C/C, C/H, H/C and H/H diet. Female offspring were mated between 18 and 22 weeks of age and euthanized at 28 days of gestation. A few days before mating and/or just before euthanasia, F1 female rabbits were fasted overnight, weighed, and blood sampled for steroids and biochemistry. Organs were weighed at euthanasia and the ovaries were collected. C/H and H/H F1 offspring had higher cholesterol and high-density lipoprotein plasma concentrations, together with a higher fat mass compared with C/C does, reflecting the effect of the postnatal diet; however, no effect of the antenatal diet was observed on most parameters. The number of primordial, primary and secondary follicles were not different between the groups, but a significantly higher number of atretic follicles was observed in the C/H (P<0.001) and in the H/C (P<0.001) compared with control C/C ovaries, demonstrating both an effect of prenatal and postnatal maternal nutrition. These data indicated that both maternal and postnatal high-fat diet may induce follicular apoptosis; however, in this model, the reproduction was not affected.


Assuntos
Dieta Hiperlipídica , Fertilidade , Atresia Folicular , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Feminino , Ovário/patologia , Gravidez , Coelhos
10.
PLoS One ; 8(4): e60451, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593221

RESUMO

The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.


Assuntos
Diferenciação Celular , Ovário/citologia , Ovário/embriologia , Testículo/citologia , Testículo/embriologia , Animais , Biomarcadores/metabolismo , Feminino , Feto/citologia , Feto/embriologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose , Camundongos , Ovário/metabolismo , Óvulo/citologia , Óvulo/metabolismo , Puberdade , Coelhos , Especificidade da Espécie , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/metabolismo , Tretinoína/metabolismo
11.
Transgenic Res ; 22(3): 489-500, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22961198

RESUMO

RNA interference is an attractive strategy to fight against viral diseases by targeting the mRNA of viral genes. Most studies have reported the transient delivery of small interfering RNA or small hairpin (shRNA) expression constructs. Here, we present the production of transgenic mice stably expressing shRNA or miRNA targeting the IE180 mRNA (immediate early gene) of the pseudorabies virus (PRV) which infects mice and farm animals. We firstly designed non-retroviral shRNA or miRNA expression vectors. Secondly, we selected the most efficient shRNA construct that targeted either the 5'part or 3'UTR of the IE mRNA and was able to knockdown the target gene expression in cultured cells, by measuring systematically the shRNA content and comparing this with the interfering effects. We then produced four lines of transgenic mice expressing different amounts of shRNA or miRNA in the brain but without signs of stimulation of innate immunity. Lastly, we tested their resistance to PRV infection. In all transgenic lines, we observed a significant resistance to viral challenge, the best being achieved with the shRNA construct targeting the 3'UTR of the IE gene. Viral DNA levels in the brains of infected mice were always lower in transgenic mice, even in animals that did not survive. Finally, this work reports an effective strategy to generate transgenic animals producing shRNA from non-retroviral expression vectors. Moreover, these mice are the first transgenic animal models producing shRNA with a significant antiviral effect but without any apparent shRNA toxicity.


Assuntos
Resistência à Doença/genética , Camundongos Transgênicos , Pseudorraiva/genética , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Regiões 3' não Traduzidas , Animais , Encéfalo/virologia , Resistência à Doença/imunologia , Genes Precoces , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/patogenicidade , Imunidade Inata/genética , Camundongos , MicroRNAs/genética
12.
Arterioscler Thromb Vasc Biol ; 31(4): 766-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21252068

RESUMO

OBJECTIVE: Plasma phospholipid transfer protein (PLTP) is involved in intravascular lipoprotein metabolism. PLTP is known to act through 2 main mechanisms: by remodeling high-density lipoproteins (HDL) and by increasing apolipoprotein (apo) B-containing lipoproteins. The aim of this study was to generate a new model of human PLTP transgenic (HuPLTPTg) rabbit and to determine whether PLTP expression modulates atherosclerosis in this species that, unlike humans and mice, displays naturally very low PLTP activity. METHODS AND RESULTS: In HuPLTPTg rabbits, the human PLTP cDNA was placed under the control of the human eF1-α gene promoter, resulting in a widespread tissue expression pattern and in increased plasma PLTP. The HuPLTPTg rabbits showed a significant increase in the cholesterol content of the plasma apoB-containing lipoprotein fractions, with a more severe trait when animals were fed a cholesterol-rich diet. In contrast, HDL cholesterol level was not modified in HuPLTPTg rabbits. Formation of aortic fatty streaks was increased in hypercholesterolemic HuPLTPTg animals as compared with nontransgenic littermates. CONCLUSIONS: Human PLTP expression in HuPLTPTg rabbit worsens atherosclerosis as a result of increased levels of atherogenic apoB-containing lipoproteins but not of alterations in their antioxidative protection or in cholesterol content of plasma HDL.


Assuntos
Doenças da Aorta/etiologia , Aterosclerose/etiologia , Colesterol na Dieta , Hipercolesterolemia/complicações , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Animais Geneticamente Modificados , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas B/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Colesterol na Dieta/sangue , HDL-Colesterol/sangue , Modelos Animais de Doenças , Células HCT116 , Humanos , Hipercolesterolemia/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Transferência de Fosfolipídeos/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Regiões Promotoras Genéticas , Coelhos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Transfecção
13.
Transgenic Res ; 19(5): 923-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20107893

RESUMO

This paper reports our attempts to characterize transgene integration sites in transgenic mouse lines generated by the microinjection of large (from 30 to 145 kb) pig DNA fragments encompassing a mammary specific gene, the whey acidic protein gene (WAP). Among the various methods used, the thermal asymmetric interlaced (TAIL-) PCR method allowed us (1) to analyze transgene/genomic borders and internal concatamer junctions for eleven transgenic lines, (2) to obtain sequence information for seven borders, (3) to place three transgenes in the mouse genome, and (4) to obtain sequence data for seven transgene junctions in concatamers. Finally, we characterized various rearrangements in the borders and the inner parts of the transgene. The possibility of such complex rearrangements should be carefully considered when transgenic animals are produced with large genomic DNA fragments.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos/ultraestrutura , Camundongos Transgênicos/genética , Recombinação Genética , Animais , Sequência de Bases , Cromossomos/genética , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microinjeções , Proteínas do Leite/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Homologia de Sequência do Ácido Nucleico , Suínos/genética
14.
Gene ; 401(1-2): 97-107, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17692477

RESUMO

Distal control of the whey acidic protein (WAP) locus was studied using a transgenic approach. A series of pig genomic fragments encompassing increasing DNA lengths upstream of the mammary specific whey acidic protein (WAP) gene transcription start point (tsp) and 5 kb downstream were used for microinjection in mouse fertilized eggs. Our data pointed out three regions as potent regulators for WAP but not for RAMP3 gene expression (a non mammary-specific gene located 30 kb upstream of the WAP gene). WAP gene activating elements were present in the -80 kb to -30 kb and -145 kb to -130 kb regions whereas inhibitors were present in the -130 kb to -80 kb region. The stimulatory regions were characterized by peaks of histone H4 acetylation and a poor nucleosome occupancy in lactating sow mammary glands but not in liver. These data reveal for the first time the existence of several remote potent regulatory regions of the pig WAP gene.


Assuntos
Regulação da Expressão Gênica , Proteínas do Leite/genética , Acetilação , Animais , Imunoprecipitação da Cromatina , Cromossomos Artificiais Bacterianos , DNA/genética , Feminino , Dosagem de Genes , Histonas/metabolismo , Lactação , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Microinjeções , Proteínas do Leite/isolamento & purificação , Nucleossomos/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Suínos , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transgenes , Zigoto/metabolismo
15.
Reprod Nutr Dev ; 46(5): 579-88, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17107647

RESUMO

Milk is a very abundant source of proteins for animal and human consumption. Milk composition can be modified using transgenesis, including exogenous gene addition and endogenous gene inactivation. The study of milk protein genes has provided researchers with regulatory regions capable of efficiently and specifically driving the expression of foreign genes in milk. The projects underway are aimed at modifying milk composition, improving its nutritional value, reducing mammary infections, providing consumers with antipathogen proteins and preparing purified recombinant proteins for pharmaceutical use. The present paper summarises the current progress in this field.


Assuntos
Animais Geneticamente Modificados , Lactação/genética , Lactação/metabolismo , Proteínas do Leite/genética , Leite/normas , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Leite/química , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Valor Nutritivo , Transgenes
16.
J Mol Endocrinol ; 36(3): 399-413, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16720712

RESUMO

Previous studies have equated FOXL2 as a crucial actor in the ovarian differentiation process in different vertebrate species. Its transcriptional extinction in the polled intersex syndrome (PIS) leads primarily to a drastic decrease of aromatase (CYP19) expression in the first steps of goat ovarian development. In this study, we provide a better characterization of early ovarian development in goat, and we provide experimental evidence demonstrating that FOXL2 represents a direct transcriptional activator of the CYP19 gene through its ovarian-specific promoter 2. Moreover, the ovarian location of FOXL2 and CYP19 proteins, together with their expression profiles in the female gonads, stress the involvement of FOXL2 co-factor(s) for regulating CYP19 transcription. Expressional analyses show that activin-betaA can be considered as a strong candidate for being one of these FOXL2 co-factors. Finally, we discuss evidence for a role of activin and estrogens in somatic and germinal cell proliferation occurring before germ cell meiosis. This period, of 20 days in goat, seems to have no equivalent in mouse. This species-specific difference could explain the phenotype discrepancy observed between XX goat PIS(-/-) and XX mouse Foxl2(-/-).


Assuntos
Aromatase/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Transcrição Gênica , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Animais , Aromatase/genética , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/genética , Cabras , Humanos , Inibinas/genética , Inibinas/metabolismo , Masculino , Camundongos , Ovário/citologia , Ovário/fisiologia , Regiões Promotoras Genéticas , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ovinos , Síndrome
17.
Growth Factors ; 23(1): 55-66, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16019427

RESUMO

We have investigated the localization and regulation of growth hormone (GH) receptor-related proteins in the ovine mammary gland. Using a new rabbit polyclonal antibody (7122A) directed against the recombinant extracellular domain of GH receptor (GHR-ECD) for western blot assays, we found two bands with apparent molecular weights of 70,000 and 50-60,000 Da in ovine mammary gland solubilized proteins. The 70,000-protein was consistent with a membrane GH receptor form deprived of post-translational modifications such as phosphorylation, glycosylation or ubiquitin binding. The 50-60,000 Da was consistent with soluble GH binding protein, generated by the cleavage of membrane GH receptor. The intensity of related GHR proteins increased slightly throughout mammary gland development and was correlated with the amount of GHR immunoreactivity observed in the mammary gland sections. Moreover, a temporal and spatial regulation of GHR immunoreactivity was found in alveolar epithelial cells. Clearly, marked GHR immunoreactivity was associated with the apical membranes of alveolar epithelial cells at lactation. The up-regulation of related GHR proteins during the differentiation of mammary tissue supports the hypothesis that GH may act specifically via its own receptors. In ovine mammary cells, GH was able to promote a time-dependent activation of MAP kinases such as prolactin (Prl) and placental lactogen (PL). GH was also able to promote slight and transient Stat5 DNA-binding activity. Differences in the time dependence of Stat5 DNA-binding activation by the three different ligands, GH, Prl and PL, were found. All these results emphasize the direct action of GH on ovine mammary cells and highlight the specificity of action of this ligand.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hormônio do Crescimento/metabolismo , Glândulas Mamárias Animais/metabolismo , Receptores da Somatotropina/metabolismo , Transdução de Sinais , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Células Cultivadas , Ativação Enzimática , Feminino , Ligantes , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peso Molecular , Testes de Precipitina , Estrutura Terciária de Proteína , Receptores da Somatotropina/química , Receptores da Somatotropina/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ovinos , Solubilidade , Fatores de Tempo
18.
Genomics ; 85(6): 715-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15885498

RESUMO

Studies on XX sex reversal in polled goats (PIS mutation: polled intersex syndrome) have led to the discovery of a female-specific locus crucial for ovarian differentiation. This genomic region is composed of at least two genes, FOXL2 and PISRT1, sharing a common transcriptional regulatory region, PIS. In this paper, we describe a third gene, PFOXic (promoter FOXL2 inverse complementary), located near FOXL2 in the opposite orientation. This gene composed of five exons encodes a 1723-bp cDNA, enclosing two repetitive elements in its 3' end. PFOXic mRNA encodes a putative protein of 163 amino acids with no homologies in any of the databases tested. The transcriptional expression of PFOXic is driven by a bidirectional promoter also enhancing FOXL2 transcription. In goats, PFOXic is expressed in developing ovaries, from 36 days postcoitum until adulthood. Ovarian-specific expression of PFOXic is regulated by the PIS region. PFOXic is found conserved only in Bovidae. But, a human gene located in the opposite orientation relative to FOXL2 can be considered a human PFOXic. Finally, we discuss evidence arguing for regulation of the level of FOXL2 transcription via the bidirectional promoter and the level of transcription of PFOXic.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Cabras/genética , Ovário/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Animais , Sequência de Bases , Transtornos do Desenvolvimento Sexual , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead , Humanos , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos/genética , Ovário/citologia , Processos de Determinação Sexual
19.
J Cell Biochem ; 95(2): 313-27, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15778982

RESUMO

The aim of the present study was to understand how the extracellular matrix (ECM) regulates at the gene level the prolactin (Prl)-induced signal transducer and activator of transcription 5 (STAT5)-dependent expression of the alpha s1-casein gene in mammary epithelial cells. CCAAT enhancer binding proteins (C/EBPs) are assumed regulators of beta-casein gene expression. Rabbit primary mammary cells express alpha s1-casein gene when cultured on collagen and not on plastic. Similar C/EBPbeta, C/EBPdelta, STAT5, and Prl-activated STAT5 were found under all culture conditions. Thus the ECM does not act through C/EBPs or STAT5. This was confirmed by transfections of rabbit primary mammary cells by a construct sensitive to ovine prolactin (oPrl) and ECM (6i TK luc) encompassing STAT5 and C/EBP binding sites. The mutation of C/EBPs binding sites showed that these sites were not mandatory for Prl-induced expression of the construct. Interestingly, chromatin immunoprecipitation by the anti-acetylhistone H4 antibody (ChIP) showed that the ECM (and not Prl) maintained a high amount of histone H4 acetylation upstream of the alpha s1-casein gene especially at the level of a distal Prl- and ECM-sensitive enhancer. Alpha6 integrin (a membrane receptor of laminin, the principal active component of the mammary ECM) was found at the surface of cells cultured on collagen but not on plastic. In cells cultured on collagen in the presence of anti-alpha6 integrin antibody, Prl-induced transcription of the endogenous alpha s1-casein gene was significantly reduced, without modifying C/EBPs and STAT5. Besides, histone H4 acetylation was reduced. Thus, we propose that the ECM regulates rabbit alpha s1-casein protein expression by local modification of chromatin structure, independently of STAT5 and C/EBPs.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Caseínas/genética , Cromatina/química , Proteínas de Ligação a DNA/fisiologia , Matriz Extracelular/fisiologia , Prolactina/fisiologia , Transativadores/fisiologia , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação da Expressão Gênica/fisiologia , Genes Reporter , Histonas/metabolismo , Integrinas/fisiologia , Proteínas do Leite , Gravidez , Coelhos , Fator de Transcrição STAT5
20.
Mol Reprod Dev ; 65(3): 262-8, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12784247

RESUMO

Experimental data obtained in previous works have led to postulate that enhancers increase the frequency of action of a linked promoter in a given cell and may have some insulating effects. The multimerized rabbit alpha s1-casein gene enhancer, the 6i multimer, was added upstream of the rabbit whey acidic protein gene (WAP) promoter (-6,300; +28 bp) fused to the firefly luciferase (luc) gene (6i WAP-luc construct). The 6i multimer increased reporter gene expression in mouse mammary HC11 cells. In transgenic mice, a very weak but significant increase was also observed. More noticeable, no silent lines were found when the 6i multimer was associated to the WAP-luc construct. This reflects the fact that the 6i multimer tends to prevent the silencing of the WAP-luc construct. After addition of the 5'HS4 insulator region from the chicken beta-globin locus upstream of the 6i multimer, similar luciferase levels were measured in 6i WAP-luc and 5'HS4 WAP-luc transgenic mice. Our present data and previous ones, which show that the 6i multimer has no insulating activity on a TK gene promoter construct indicate that the insulating activity of the 6i multimer is construct-dependent and not amplified by the 5'HS4 insulator.


Assuntos
Caseínas/genética , Elementos Facilitadores Genéticos/genética , Proteínas do Leite/genética , Regiões Promotoras Genéticas , Animais , Caseínas/química , Caseínas/metabolismo , Luciferases/genética , Luciferases/metabolismo , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Coelhos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Transfecção , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...