Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 127(23): 2791-803, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27084890

RESUMO

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Assuntos
Transtornos Plaquetários/genética , Predisposição Genética para Doença , Hemorragia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Trombose/genética , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
2.
Genome Med ; 7(1): 36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949529

RESUMO

BACKGROUND: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. METHODS: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. RESULTS: We show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. CONCLUSIONS: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.

3.
Nat Genet ; 44(4): 435-9, S1-2, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366785

RESUMO

The exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this inheritance mechanism explained 53 of 55 cases (P < 5 × 10(-228)) of the rare congenital malformation syndrome. Of the 53 cases with this inheritance pattern, 51 carried a submicroscopic deletion of 1q21.1 that has previously been associated with TAR, and two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in diminished RBM8A transcription in vitro and that Y14 expression is reduced in platelets from individuals with TAR. Our data implicate Y14 insufficiency and, presumably, an EJC defect as the cause of TAR syndrome.


Assuntos
Predisposição Genética para Doença , Proteínas de Ligação a RNA/genética , Trombocitopenia/genética , Deformidades Congênitas das Extremidades Superiores/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Rádio (Anatomia)/anormalidades , Alinhamento de Sequência , Análise de Sequência de DNA , Trombocitopenia/congênito , Adulto Jovem , Peixe-Zebra/genética
4.
Diabetes ; 57(6): 1753-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18332098

RESUMO

OBJECTIVE: The nonclassical major histocompatibility complex (MHC) class I chain-related molecules (MICs), encoded within the MHC, function in immunity. The transmembrane polymorphism in MICA (MICA-STR) has been reported to be associated with type 1 diabetes. In this study, we directly sequenced both of the highly polymorphic MIC genes (MICA and MICB) in order to establish whether they are associated with type 1 diabetes independently of the known type 1 diabetes MHC class II genes HLA-DRB1 and HLA-DQB1. RESEARCH DESIGN AND METHODS: We developed a sequencing-based typing method and genotyped MICA and MICB in 818 families (2,944 individuals) with type 1 diabetes from the U.K. and U.S. (constructing the genotype from single nucleotide polymorphisms in exons 2-4 of MICA and 2-5 of MICB) and additionally genotyped the MICA-STR in 2,023 type 1 diabetic case subjects and 1,748 control subjects from the U.K. We analyzed the association of the MICA and MICB alleles and genotypes with type 1 diabetes using regression methods. RESULTS: We identified known MICA and MICB alleles and discovered four new MICB alleles. Based on this large-scale and detailed genotype data, we found no evidence for association of MICA and MICB with type 1 diabetes independently of the MHC class II genes (MICA P = 0.08, MICA-STR P = 0.76, MICB P = 0.03, after conditioning on HLA-DRB1 and HLA-DQB1). CONCLUSIONS: Common MICA and MICB genetic variations including the MICA-STR are not associated, in a primary way, with susceptibility to type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Antígenos HLA-D/genética , Antígenos de Histocompatibilidade Classe I/genética , Substituição de Aminoácidos , Éxons , Predisposição Genética para Doença , Genótipo , Antígenos HLA-DQ/genética , Cadeias beta de HLA-DQ , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Valores de Referência
5.
Nat Genet ; 39(11): 1329-37, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952073

RESUMO

We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.


Assuntos
Autoimunidade/genética , Neoplasias da Mama/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Espondilite Anquilosante/genética , Tireoidite Autoimune/genética , Aminopeptidases/genética , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Mapeamento Cromossômico , Genética Populacional , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Antígenos de Histocompatibilidade Menor , Esclerose Múltipla/epidemiologia , América do Norte/epidemiologia , Reação em Cadeia da Polimerase , Receptores Imunológicos/genética , Receptores de Interleucina/genética , Espondilite Anquilosante/epidemiologia , Tireoidite Autoimune/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...