Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geochim Cosmochim Acta ; 316: 1-20, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001943

RESUMO

The chemical and isotopic signatures of moderately volatile elements are useful for understanding processes of volatile depletion in planetary formation and differentiation. However, the fractionation factors between gas and melt phases during evaporation that are required to model these planetary volatile depletion processes are still sparse. In this study, twenty heating experiments were conducted in 1 atm gas-mixing furnaces to constrain the behavior of K, Cu, and Zn evaporation and isotopic fractionation from basaltic melts at high temperatures. The temperatures range from 1300 °C to 1400 °C, and durations are from 2 to 8 days. Oxygen fugacities (fO2) range from one log unit below to ten log units above that of the iron-wüstite buffer (IW-1 to IW+10, corresponding to logfO2 of -10.7 to -0.68 at 1400 °C). The conditions were selected to achieve an evaporation-dominated regime (where timescales of diffusion << evaporation for trace elements) in order to avoid diffusion-limited evaporation. Our results show during evaporation Zn behaved as the most volatile, followed by Cu and then K, regardless of temperature and oxygen fugacity. Partitioning of Zn into spinel layers within experimental capsules, however, has been observed, which has substantial effects on the Zn isotope fractionation factor. Therefore, Zn results are presented but further discussion is excluded. Element loss depends on both temperature and oxygen fugacity, where higher temperatures and lower oxygen fugacities promote evaporation. However, with varying temperature and oxygen fugacity, the kinetic isotopic fractionation factors, α (where, R R 0 = f α - 1 ), for K and Cu remain constant, thus these factors can be applied to a wider range of conditions than those in this study. The experimentally determined fractionation factors for K, and Cu during evaporation from basaltic melts are 0.9944, and 0.9961, respectively. The fractionation factors for these elements with varying volatilities are all significantly larger than the "apparent observed fractionation factors," which approach one and are inferred from lunar basalts relative to the Bulk Silicate Earth. This observation suggests near-equilibrium conditions during volatile-element loss from the Moon as the "apparent observed fractionation factors" of lunar basalts are similar for all three elements.

2.
Nat Commun ; 6: 8880, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694712

RESUMO

The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang'e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source.

3.
Sci Adv ; 1(1): e1400050, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26601128

RESUMO

Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe (40)Ar/(39)Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt-forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through (40)Ar/(39)Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System.

4.
Nature ; 436(7047): 66-9, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001063

RESUMO

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rover's tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown 'global' dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.


Assuntos
Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Solo/análise , Água/química , Bromo/análise , Cloro/análise , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...