Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 302: 118961, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35183667

RESUMO

The intestinal microbiota has a key role in human health via the interaction with the somatic and immune cells in the digestive tract environment. Food, through matrix effect, nutrient and non-nutrient molecules, is a key regulator of microbiota diversity. As a food contaminant, the pesticide chlorpyrifos (CPF) has an effect on the composition of the intestinal microbiota and induces perturbation of microbiota. Prebiotics (and notably inulin) are known for their ability to promote an equilibrium of the microbiota that favours saccharolytic bacteria. The SHIME® dynamic in vitro model of the human intestine was exposed to CPF and inulin concomitantly for 30 days, in order to assess variations in both the bacterial populations and their metabolites. Various analyses of the microbiota (notably temporal temperature gradient gel electrophoresis) revealed a protective effect of the prebiotic through inhibition of the enterobacterial (E. coli) population. Bifidobacteria were only temporarily inhibited at D15 and recovered at D30. Although other potentially beneficial populations (lactobacilli) were not greatly modified, their activity and that of the saccharolytic bacteria in general were highlighted by an increase in levels of short-chain fatty acids and more specifically butyrate. Given the known role of host-microbiota communication, CPF's impact on the body's homeostasis remains to be determined.


Assuntos
Clorpirifos , Microbiota , Clorpirifos/toxicidade , Escherichia coli/metabolismo , Humanos , Inulina/metabolismo , Inulina/farmacologia , Prebióticos/análise
2.
Gut Pathog ; 8: 50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826358

RESUMO

BACKGROUND: Human are confronted on a daily basis with contaminant pesticide residues in food, water and other components of the environment. Although the digestive system is the first organ to come into contact with food contaminants, very few data are available on the impact of low-dose pesticide exposure during the in utero and postnatal periods on intestinal bacterial translocation (BT). Previous studies have revealed that chlorpyrifos (CPF) exposure is associated with intestinal dysbiosis and the contamination of sterile organs. Here, molecular typing was used to investigate intestinal bacterial translocation in rats exposed to chlorpyrifos in utero and during lactation. The translocated bacteria were profiled, and CPF tolerance and antibiotic resistance traits were determined. METHODS: A total of 72 intestinal segments and extra-intestinal organs were obtained from 14 CPF-exposed rats. The samples were cultured to isolate bacterial strains that had tolerated treatment with 1 or 5 mg CPF/kg bodyweight/day in vivo. Strains were identified using matrix-assisted laser desorption/ionization (MALDI) Biotyper. The disk diffusion method was used to determine the antibiotic susceptibility. The isolates were genotyped with PCR assays for the enterobacterial repetitive intergenic consensus sequence and random amplification polymorphic DNA. RESULTS: Bacterial translocation was confirmed for 7 of the 31 strains (22.6 %) isolated from extra-intestinal sites. Overall, the most prevalent bacteria were Staphylococcus aureus (55.5 % of the 72 intestinal and extra-intestinal isolates), Enterococcus faecalis (27.7 %) and Bacillus cereus (9.8 %). 5 % of the S. aureus isolates displayed methicillin resistance. Seventy two strains were identified phenotypically, and seven translocated strains (mainly S. aureus) were identified by genotyping. Genotypically confirmed translocation was mainly observed found in pesticide-exposed groups (6 out of 7). CONCLUSION: BT from the intestinal tract colonized normally sterile extra-intestinal organs in CPF-exposed rats. Our findings validate the use of molecular typing for the assessment of intestinal BT in CPF-exposed rats during critical periods of development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-27827942

RESUMO

The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine-the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are "SHIME®-compartment" specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.


Assuntos
Clorpirifos/toxicidade , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Inseticidas/toxicidade , Humanos , Modelos Biológicos , Modelos Teóricos
4.
J Pediatr Gastroenterol Nutr ; 61(1): 30-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25643018

RESUMO

OBJECTIVES: Pesticide exposure via residues in food may be especially harmful when it takes place in the developing child. The present study was designed to assess the impact of perinatal exposure to chlorpyrifos (CPF, an insecticide known to cross the placental barrier). METHODS: Female rats were exposed to oral CPF (1 or 5 mg kg day vs vehicle controls) from gestation onset up to weaning of the pups that were individually gavaged (CPF or vehicle) thereafter. Two developmental time points were studied: weaning (day 21) and adulthood (day 60). After sacrifice, samples from the intestinal tract and other organs underwent microbiological and histological analyses. RESULTS: Rat pups exposed to 5 mg kg day CPF were both significantly smaller (body length) and lighter than controls. Exposure to CPF was associated with changes in the histological structures (shorter and thinner intestinal villosities), an intestinal microbial dysbiosis, and increased bacterial translocation in the spleen and liver. These significant microbial changes in the gut were associated with impaired epithelium protection (mucin-2) and microbial pattern recognition receptor (Toll-like 2 and 4) gene expression. CONCLUSIONS: Exposure to CPF during gestation and development affected the pups' intestinal development, with morphological alteration of the structures involved in nutrient absorption, intestinal microbial dysbiosis, alteration of mucosal barrier (mucin-2), stimulation of the innate immune system, and increased bacterial translocation. Perinatal exposure to CPF may therefore have short- and long-term impacts on the digestive tract.


Assuntos
Clorpirifos/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Inseticidas/efeitos adversos , Intestinos/efeitos dos fármacos , Exposição Materna/efeitos adversos , Administração Oral , Animais , Translocação Bacteriana/efeitos dos fármacos , Feminino , Trato Gastrointestinal , Crescimento/efeitos dos fármacos , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Fígado/microbiologia , Mucina-2/metabolismo , Gravidez , Ratos Wistar , Baço/microbiologia , Receptores Toll-Like/metabolismo , Desmame
5.
PLoS One ; 9(7): e102217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019507

RESUMO

The epithelium's barrier function is crucial for maintaining homeostasis and preventing the passage of food antigens and luminal bacteria. This function is essentially subserved by tight junctions (TJs), multiprotein complexes located in the most apical part of the lateral membrane. Some gastrointestinal disease states are associated with elevated intestinal permeability to macromolecules. In a study on rats, we determined the influence of chronic, daily ingestion of chlorpyrifos (CPF, a pesticide that crosses the placental barrier) during pre- and postnatal periods on intestinal permeability and TJ characteristics in the pups. Fluorescein isothiocyanate (FITC)-dextran was used as a marker of paracellular transport and mucosal barrier dysfunction. Pups were gavaged with FITC-dextran solution and blood samples were collected every 30 min for 400 min and analyzed spectrofluorimetrically. At sacrifice, different intestinal segments were resected and prepared for analysis of the transcripts (qPCR) and localization (using immunofluorescence) of ZO-1, occludin and claudins (scaffolding proteins that have a role in the constitution of TJs). In rats that had been exposed to CPF in utero and after birth, we observed a progressive increase in FITC-dextran passage across the epithelial barrier from 210 to 325 min at day 21 after birth (weaning) but not at day 60 (adulthood). At both ages, there were significant changes in intestinal TJ gene expression, with downregulation of ZO-1 and occludin and upregulation of claudins 1 and 4. In some intestinal segments, there were changes in the cellular localization of ZO-1 and claudin 4 immunostaining. Lastly, bacterial translocation to the spleen was also observed. The presence of CPF residues in food may disturb epithelial homeostasis in rats. Changes in TJ protein expression and localization may be involved in gut barrier dysfunction in this model. Uncontrolled passage of macromolecules and bacteria across the intestinal epithelium may be a risk factor for digestive inflammatory diseases.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Intestinos/efeitos dos fármacos , Exposição Materna , Permeabilidade/efeitos dos fármacos , Fatores Etários , Animais , Claudinas/metabolismo , Dextranos , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Imunofluorescência , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Gravidez , Ratos , Espectrometria de Fluorescência , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...