Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(7): e0197021, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285686

RESUMO

øX174, G4, and α3 represent the three sister genera of a Microviridae subfamily. α3-like genomes are considerably larger than their sister genera genomes, yet they are packaged into capsids of similar internal volumes. They also contain multiple A* genes, which are nested within the larger A gene reading frame. Although unessential under most conditions, A* proteins mediate the fidelity of packaging reactions. Larger genomes and multiple A* genes may indicate that genome packaging is more problematic for α3-like viruses, especially at lower temperatures, where DNA persistence lengths would be longer. Unlike members of the other genera, which reliably form plaques at 20°C, α3-like phages are naturally cold sensitive below 28°C. To determine whether there was a connection between the uniquely α3-like genome characteristics and the cold-sensitive phenotype, the α3 assembly pathway was characterized at low temperature. Although virions were not detected, particles consistent with off-pathway packaging complexes were observed. In a complementary evolutionary approach, α3 was experimentally evolved to grow at progressively lower temperatures. The two major responses to cold adaptation were genome reduction and elevated A* gene expression. IMPORTANCE The production of enzymes, transcription factors, and viral receptors directly influences the niches viruses can inhabit. Some prokaryotic hosts can thrive in widely differing environments; thus, physical parameters, such as temperature, should also be considered. These variables may directly alter host physiology, preventing viral replication. Alternatively, they could negatively inhibit infection processes in a host-independent manner. The members of three sister Microviridae genera (canonical species øX174, G4 and α3) infect the same host, but α3-like viruses are naturally cold sensitive, which could effectively exclude them from low-temperature environments (<28°C). Exclusion appeared to be independent of host cell physiology. Instead, it could be largely attributed to low-temperature packaging defects. The results presented here demonstrate how physical parameters, such as temperature, can directly influence viral diversification and niche determination in a host-independent manner.


Assuntos
Adaptação Fisiológica , Vírus de DNA , Genoma Viral , Adaptação Fisiológica/genética , Bacteriófagos/genética , Capsídeo/metabolismo , Temperatura Baixa , Vírus de DNA/genética , Montagem de Vírus
5.
Proc Natl Acad Sci U S A ; 112(41): 12741-5, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26371298

RESUMO

Global climate change is driving species poleward and upward in high-latitude regions, but the extent to which the biodiverse tropics are similarly affected is poorly known due to a scarcity of historical records. In 1802, Alexander von Humboldt ascended the Chimborazo volcano in Ecuador. He recorded the distribution of plant species and vegetation zones along its slopes and in surrounding parts of the Andes. We revisited Chimborazo in 2012, precisely 210 y after Humboldt's expedition. We documented upward shifts in the distribution of vegetation zones as well as increases in maximum elevation limits of individual plant taxa of >500 m on average. These range shifts are consistent with increased temperatures and glacier retreat on Chimborazo since Humboldt's study. Our findings provide evidence that global warming is strongly reshaping tropical plant distributions, consistent with Humboldt's proposal that climate is the primary control on the altitudinal distribution of vegetation.


Assuntos
Mudança Climática , Ecossistema , Plantas , Equador , Plantas/classificação , Plantas/metabolismo
6.
J Eukaryot Microbiol ; 55(1): 44-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18251802

RESUMO

Abiotic factors are thought to be primarily responsible for the loss of bacteriophages from the environment, but ingestion of phages by heterotrophs may also play a role in their elimination. Tetrahymena thermophila has been shown to ingest and inactivate bacteriophage T4 in co-incubation experiments. In this study, other Tetrahymena species were co-incubated with T4 with similar results. In addition, T. thermophila was shown to inactivate phages T5 and lambda in co-incubations. Several approaches, including direct visualization by electron microscopy, demonstrated that ingestion is required for T4 inactivation. Mucocysts were shown to have no role in the ingestion of T4. When (35)S-labeled T4 were fed to T. thermophila in a pulse-chase experiment, the degradation of two putative capsid proteins, gp23(*) and hoc, was observed. In addition, a polypeptide with the apparent molecular mass of 52 kDa was synthesized. This suggests that Tetrahymena can use phages as a minor nutrient source in the absence of bacteria.


Assuntos
Bacteriófago T4/crescimento & desenvolvimento , Tetrahymena/fisiologia , Tetrahymena/virologia , Animais , Bacteriófago T4/ultraestrutura , Bacteriófago lambda/crescimento & desenvolvimento , Proteínas do Capsídeo/metabolismo , Técnicas de Cocultura/métodos , Marcação por Isótopo , Microscopia Eletrônica , Mutação , Radioisótopos de Enxofre/metabolismo , Fagos T/crescimento & desenvolvimento , Tetrahymena/genética , Tetrahymena/ultraestrutura , Tetrahymena thermophila/genética , Tetrahymena thermophila/fisiologia , Tetrahymena thermophila/ultraestrutura , Tetrahymena thermophila/virologia , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA