Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 50(2): 375-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920769

RESUMO

Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Solo , Suécia
2.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120488, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836792

RESUMO

The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Árticas , Atividades Humanas , Plantas , Dinâmica Populacional , Suécia , Temperatura , Raios Ultravioleta
4.
Ambio ; 41 Suppl 3: 178-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864692

RESUMO

This article gives an overview of the studies on the environment surrounding the Abisko Scientific Research Station in Swedish Lapland. The long-term monitoring of the Station on processes related to the climate, and to the physical, biotic, and chemical environmental conditions is particularly addressed. Some variables are recorded since more than 100 years. The obtained data in combination with results from short-term studies and manipulation experiments are important to understand past and future conditions of the ecosystems. This has practical applications for the planning of tourism, transports, reindeer herding, and for societal purposes.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Animais , Regiões Árticas , Aves/fisiologia , Briófitas , Poluentes Ambientais/química , Peixes , Mamíferos , Dinâmica Populacional , Suécia
5.
Ambio ; 41 Suppl 3: 187-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864693

RESUMO

Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.


Assuntos
Ecossistema , Homeostase/fisiologia , Plantas/classificação , Regiões Árticas , Monitoramento Ambiental/métodos , Especificidade da Espécie , Suécia , Fatores de Tempo
7.
Ambio ; 40(6): 566-74, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954720

RESUMO

A unique long term, 49-year record (divided into three time periods 1961-1976, 1977-1992, and 1993-2009) of snow profile stratigraphy from the Swedish sub Arctic, was analyzed with a focus on changes in snow characteristics. The data set contained grain size, snow layer hardness, grain compactness, and snow layer dryness, observed every second week during the winter season. The results showed an increase in very hard snow layers, with harder snow in early winter and more moist snow during spring. There was a striking increase in the number of observations with very hard snow at ground level over time. More than twice as many occasions with hard snow at ground level were observed between 1993 and 2009 compared to previous years, which may have a significant effect on plants and animals. The changes in snow characteristics are most likely a result of the increasing temperatures during the start and the end of the snow season.


Assuntos
Mudança Climática , Neve , Regiões Árticas , Estações do Ano , Suécia , Temperatura
8.
Ambio ; 40(6): 600-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954723

RESUMO

A 30-year series (1978-2007) of photographic records were analysed to determine changes in lake ice cover, local (low elevation) and montane (high elevation) snow cover and phenological stages of mountain birch (Betula pubescens ssp. czerepanovii) at the Abisko Scientific Research Station, Sweden. In most cases, the photographic-derived data showed no significant difference in phenophase score from manually observed field records from the same period, demonstrating the accuracy and potential of using weekly repeat photography as a quicker, cheaper and more adaptable tool to remotely study phenology in both biological and physical systems. Overall, increases in ambient temperatures coupled with decreases in winter ice and snow cover, and earlier occurrence of birch foliage, signal a reduction in the length of winter, a shift towards earlier springs and an increase in the length of available growing season in the Swedish sub-arctic.


Assuntos
Mudança Climática , Camada de Gelo , Meio Ambiente , Fotografação , Neve , Suécia , Temperatura , Fatores de Tempo
9.
Ambio ; 40(6): 672-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954729

RESUMO

This study was conducted in the Swedish subArctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine-birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types--"birch forest-heath with mosses" and "meadow with low herbs", while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.


Assuntos
Biomassa , Desenvolvimento Vegetal , Árvores/crescimento & desenvolvimento , Regiões Árticas , Betula/crescimento & desenvolvimento , Mudança Climática , Suécia , Fatores de Tempo
10.
Ambio ; 40(6): 683-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954730

RESUMO

Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009-2010 and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (> or =3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.


Assuntos
Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Árvores/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Humanos , Salix/crescimento & desenvolvimento , Suécia , Fatores de Tempo
11.
Ambio ; 40(6): 705-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954732

RESUMO

Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental , Regiões Árticas , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...