Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-502390

RESUMO

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Due to confounding factors in the human population, such as pre-existing immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were upregulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggests that in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270254

RESUMO

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic has led to the development of various diagnostic tests. The OraSure InteliSwab(R) COVID-19 Rapid Test is a recently developed and FDA emergency use authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern like Omicron. In this study, the sensitivity of the OraSure InteliSwab(R) Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab(R) Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants with recorded limits of detection ranging between 3.77 x 105 and 9.13 x 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the 6 VOCs. Ultimately, the OraSure InteliSwab(R) COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-457626

RESUMO

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. Author SummaryIn the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-453518

RESUMO

Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 {micro}m traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451505

RESUMO

Many different vaccine candidates against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of COVID-19, are currently approved and under development. Vaccine platforms vary from mRNA vaccines to viral-vectored vaccines, and several candidates have been shown to produce humoral and cellular responses in small animal models, non-human primates and human volunteers. In this study, six non-human primates received a prime-boost intramuscular vaccination with 4 {micro}g of mRNA vaccine candidate CV07050101, which encodes a pre-fusion stabilized spike (S) protein of SARS-CoV-2. Boost vaccination was performed 28 days post prime vaccination. As a control, six animals were similarly injected with PBS. Humoral and cellular immune responses were investigated at time of vaccination, and two weeks afterwards. No antibodies could be detected two and four weeks after prime vaccination. Two weeks after boost vaccination, binding but no neutralizing antibodies were detected in 4 out of 6 non-human primates. SARS-CoV-2 S protein specific T cell responses were detected in these 4 animals. In conclusion, prime-boost vaccination with 4 {micro}g of vaccine candidate CV07050101 resulted in limited immune responses in 4 out of 6 non-human primates.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448814

RESUMO

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442780

RESUMO

The circulation of SARS-CoV-2 has resulted in the emergence of variants of concern (VOCs). It is currently unclear whether previous infection with SARS-CoV-2 provides protection against reinfection with VOCs. Here, we show that low dose aerosol exposure to hCoV-19/human/USA/WA-CDC-WA1/2020 (WA1, lineage A), resulted in a productive mild infection. In contrast, low dose of SARS-CoV-2 via fomites did not result in productive infection in the majority of exposed hamsters and these animals remained non-seroconverted. After recovery, hamsters were re-exposed to hCoV-19/South African/KRISP-K005325/2020 (VOC B.1.351) via an intranasal challenge. Seroconverted rechallenged animals did not lose weight and shed virus for 3 days. They had little infectious virus and no pathology in the lungs. In contrast, shedding, weight loss and extensive pulmonary pathology caused by B.1.351 replication was observed in the non-seroconverted animals. The rechallenged seroconverted animals did not transmit virus to naive sentinels via direct contact transmission, in contrast to the non-seroconverted animals. Reinfection with B.1.351 triggered an anamnestic response that boosted not only neutralizing titers against lineage A, but also titers against B.1.351. Our results confirm that aerosol exposure is a more efficient infection route than fomite exposure. Furthermore, initial infection with SARS-CoV-2 lineage A does not prevent heterologous reinfection with B.1.351 but prevents disease and onward transmission. These data suggest that previous SARS-CoV-2 exposure induces partial protective immunity. The reinfection generated a broadly neutralizing humoral response capable of effectively neutralizing B.1.351 while maintaining its ability to neutralize the virus to which the initial response was directed against.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435000

RESUMO

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429193

RESUMO

Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a coronavirus that infects both humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. While some mutations found in camel-derived MERS-CoV strains have been characterized, the majority of natural variation found across MERS-CoV isolates remains unstudied. Here we report on the environmental stability, replication kinetics and pathogenicity of several diverse isolates of MERS-CoV as well as SARS-CoV-2 to serve as a basis of comparison with other stability studies. While most of the MERS-CoV isolates exhibited similar stability and pathogenicity in our experiments, the camel derived isolate, C/KSA/13, exhibited reduced surface stability while another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that while betacoronaviruses may have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the importance of continual, global viral surveillance.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426058

RESUMO

Intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 protected rhesus macaques against pneumonia but did not reduce shedding of SARS-CoV-2. Here we investigate whether intranasally administered ChAdOx1 nCoV-19 reduces shedding, using a SARS-CoV-2 virus with the D614G mutation in the spike protein. Viral load in swabs obtained from intranasally vaccinated hamsters was significantly decreased compared to controls and no viral RNA or infectious virus was found in lung tissue, both in a direct challenge and a transmission model. Intranasal vaccination of rhesus macaques resulted in reduced shedding and a reduction in viral load in bronchoalveolar lavage and lower respiratory tract tissue. In conclusion, intranasal vaccination reduced shedding in two different SARS-CoV-2 animal models, justifying further investigation as a potential vaccination route for COVID-19 vaccines.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-093195

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-043166

RESUMO

BackgroundEffective therapeutics to treat COVID-19 are urgently needed. Remdesivir is a nucleotide prodrug with in vitro and in vivo efficacy against coronaviruses. Here, we tested the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection. MethodsTo evaluate the effect of remdesivir treatment on SARS-CoV-2 disease outcome, we used the recently established rhesus macaque model of SARS-CoV-2 infection that results in transient lower respiratory tract disease. Two groups of six rhesus macaques were infected with SARS-CoV-2 and treated with intravenous remdesivir or an equal volume of vehicle solution once daily. Clinical, virological and histological parameters were assessed regularly during the study and at necropsy to determine treatment efficacy. ResultsIn contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs. Virus titers in bronchoalveolar lavages were significantly reduced as early as 12hrs after the first treatment was administered. At necropsy on day 7 after inoculation, lung viral loads of remdesivir-treated animals were significantly lower and there was a clear reduction in damage to the lung tissue. ConclusionsTherapeutic remdesivir treatment initiated early during infection has a clear clinical benefit in SARS-CoV-2-infected rhesus macaques. These data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to severe pneumonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...