Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2802: 473-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819569

RESUMO

Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.


Assuntos
Evolução Molecular , Genoma de Inseto , Genômica , Insetos , Animais , Insetos/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Filogenia , Análise de Sequência de DNA/métodos
3.
Sci Rep ; 12(1): 6402, 2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35431314

RESUMO

The coexistence of different mating strategies, whereby a species can reproduce both by selfing and outcrossing, is an evolutionary enigma. Theory predicts two predominant stable mating states: outcrossing with strong inbreeding depression or selfing with weak inbreeding depression. As these two mating strategies are subject to opposing selective forces, mixed breeding systems are thought to be a rare transitory state yet can persist even after multiple speciation events. We hypothesise that if each mating strategy plays a distinctive role during some part of the species life history, opposing selective pressures could be balanced, permitting the stable co-existence of selfing and outcrossing sexual morphs. In this scenario, we would expect each morph to be specialised in their respective roles. Here we show, using behavioural, physiological and gene expression studies, that the selfing (hermaphrodite) and outcrossing (female) sexual morphs of the trioecious nematode Auanema freiburgensis have distinct adaptations optimised for their different roles during the life cycle. A. freiburgensis hermaphrodites are known to be produced under stressful conditions and are specialised for dispersal to new habitat patches. Here we show that they exhibit metabolic and intestinal changes enabling them to meet the cost of dispersal and reproduction. In contrast, A. freiburgensis females are produced in favourable conditions and facilitate rapid population growth. We found that females compensate for the lack of reproductive assurance by reallocating resources from intestinal development to mate-finding behaviour. The specialisation of each mating system for its role in the life cycle could balance opposing selective forces allowing the stable maintenance of both mating systems in A. freiburgensis.


Assuntos
Evolução Biológica , Depressão por Endogamia , Animais , Feminino , Estágios do Ciclo de Vida , Reprodução/fisiologia
4.
Ecol Evol ; 10(14): 7212-7220, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760522

RESUMO

The allocation of resources to the production of one sex or another has been observed in a large variety of animals. Its theoretical basis allows accurate predictions of offspring sex ratios in many species, but the mechanisms by which sex allocation is controlled are poorly understood. Using previously published data, we investigated whether alternative splicing, combined with differential gene expression, was involved with sex allocation in the parasitoid wasp, Nasonia vitripennis. We found that sex allocation is not controlled by alternative splicing but changes in gene and transcript-specific expression, which were identified to be involved with oviposition, were shown to be similar to those involved in sperm motility and capacitation. Genes involved in cholesterol efflux, a key component of capacitation, along with calcium transport, neurotransmission, trypsin, and MAPKinase activity were regulated in ovipositing wasps. The results show evidence for regulation of sperm motility and of capacitation in an insect which, in the context of the physiology of the N. vitripennis spermatheca, could be important for sex allocation.

5.
Genome Biol Evol ; 12(8): 1471-1481, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597949

RESUMO

Allele-specific expression is when one allele of a gene shows higher levels of expression compared with the other allele, in a diploid organism. Recent work has identified allele-specific expression in a number of Hymenopteran species. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals, DNA methylation is often associated with genes which show allele-specific expression. DNA methylation systems have been described in species of Hymenoptera, providing a candidate mechanism. Using previously generated RNA-Seq and whole-genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers, we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive and sterile workers and the proportion of allele-specific expression bias generally varies between genetically distinct colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both reproductive and sterile workers, with reproductive workers showing significantly more genes with allele-specific methylation. Finally, there is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that cis-acting DNA methylation does not directly drive genome-wide allele-specific expression in this species.


Assuntos
Abelhas/genética , Metilação de DNA , Expressão Gênica , Alelos , Animais , Abelhas/metabolismo , Feminino , Genoma de Inseto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...