Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Gut ; 73(6): 932-940, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38443061

RESUMO

OBJECTIVE: Colonic diverticulosis is a prevalent condition among older adults, marked by the presence of thin-walled pockets in the colon wall that can become inflamed, infected, haemorrhage or rupture. We present a case-control genetic and transcriptomic study aimed at identifying the genetic and cellular determinants underlying this condition and the relationship with other gastrointestinal disorders. DESIGN: We conducted DNA and RNA sequencing on colonic tissue from 404 patients with (N=172) and without (N=232) diverticulosis. We investigated variation in the transcriptome associated with diverticulosis and further integrated this variation with single-cell RNA-seq data from the human intestine. We also integrated our expression quantitative trait loci with genome-wide association study using Mendelian randomisation (MR). Furthermore, a Polygenic Risk Score analysis gauged associations between diverticulosis severity and other gastrointestinal disorders. RESULTS: We discerned 38 genes with differential expression and 17 with varied transcript usage linked to diverticulosis, indicating tissue remodelling as a primary diverticula formation mechanism. Diverticula formation was primarily linked to stromal and epithelial cells in the colon including endothelial cells, myofibroblasts, fibroblasts, goblet, tuft, enterocytes, neurons and glia. MR highlighted five genes including CCN3, CRISPLD2, ENTPD7, PHGR1 and TNFSF13, with potential causal effects on diverticulosis. Notably, ENTPD7 upregulation was confirmed in diverticulosis cases. Additionally, diverticulosis severity was positively correlated with genetic predisposition to diverticulitis. CONCLUSION: Our results suggest that tissue remodelling is a primary mechanism for diverticula formation. Individuals with an increased genetic proclivity to diverticulitis exhibit a larger numbers of diverticula on colonoscopy.


Assuntos
Diverticulose Cólica , Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Diverticulose Cólica/genética , Masculino , Feminino , Idoso , Estudos de Casos e Controles , Pessoa de Meia-Idade , Locos de Características Quantitativas , Análise da Randomização Mendeliana , Predisposição Genética para Doença
2.
medRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609199

RESUMO

Objectives: Oral fluids provide ready detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses. This study sought to determine relationships between oral virus, oral anti-SARS-CoV-2-specific antibodies, and symptoms. Methods: Saliva/throat wash (saliva/TW) were collected from asymptomatic and symptomatic, nasopharyngeal (NP) SARS-CoV-2 RT-qPCR+, subjects (n=47). SARS-CoV-2 RT-qPCR, N-antigen detection by immunoblot and lateral flow assay (LFA) were performed. RT-qPCR targeting viral subgenomic RNA (sgRNA) was sequence confirmed. SARS-CoV-2-anti-S protein RBD LFA assessed IgM and IgG responses. Structural analysis identified host salivary molecules analogous to SARS-CoV-2-N-antigen. Statistical analyses were performed. Results: At baseline, LFA-detected N-antigen was immunoblot-confirmed in 82% of TW. However, only 3/17 were saliva/TW qPCR+. Sixty percent of saliva and 83% of TW demonstrated persistent N-antigen at 4 weeks. N-antigen LFA signal in three negative subjects suggested potential cross-detection of 4 structurally analogous salivary RNA binding proteins (alignment 19-29aa, RMSD 1-1.5 Angstroms). At entry, symptomatic subjects demonstrated replication-associated sgRNA junctions, were IgG+ (94%/100% in saliva/TW), and IgM+ (75%/63%). At 4 weeks, SARS-CoV-2 IgG (100%/83%) and IgM (80%/67%) persisted. Oral IgG correlated 100% with NP+PCR status. Cough and fatigue severity (p=0.0008 and 0.016), and presence of nausea, weakness, and composite upper respiratory symptoms (p=0.005, 0.037 and 0.017) were negatively associated with oral IgM. Female oral IgM levels were higher than male (p=0.056). Conclusion: Important to transmission and disease course, oral viral replication and persistence showed clear relationships with select symptoms, early Ig responses, and gender during early infection. N-antigen cross-reactivity may reflect mimicry of structurally analogous host proteins.

3.
Res Sq ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645853

RESUMO

Objectives: Oral fluids provide ready detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses. This study sought to determine relationships between oral virus, oral anti-SARS-CoV-2-specific antibodies, and symptoms. Methods: Saliva/throat wash (saliva/TW) were collected from asymptomatic and symptomatic, nasopharyngeal (NP) SARS-CoV-2 RT-qPCR+, subjects (n=47). SARS-CoV-2 RT-qPCR, N-antigen detection by immunoblot and lateral flow assay (LFA) were performed. RT-qPCR targeting viral subgenomic RNA (sgRNA) was sequence confirmed. SARS-CoV-2-anti-S protein RBD LFA assessed IgM and IgG responses. Structural analysis identified host salivary molecules analogous to SARS-CoV-2-N-antigen. Statistical analyses were performed. Results: At baseline, LFA-detected N-antigen was immunoblot-confirmed in 82% of TW. However, only 3/17 were saliva/TW qPCR+. Sixty percent of saliva and 83% of TW demonstrated persistent N-antigen at 4 weeks. N-antigen LFA signal in three negative subjects suggested potential cross-detection of 4 structurally analogous salivary RNA binding proteins (alignment 19-29aa, RMSD 1-1.5 Angstroms). At entry, symptomatic subjects demonstrated replication-associated sgRNA junctions, were IgG+ (94%/100% in saliva/TW), and IgM+ (75%/63%). At 4 weeks, SARS-CoV-2 IgG (100%/83%) and IgM (80%/67%) persisted. Oral IgG correlated 100% with NP+PCR status. Cough and fatigue severity (p=0.0008 and 0.016), and presence of nausea, weakness, and composite upper respiratory symptoms (p=0.005, 0.037 and 0.017) were negatively associated with oral IgM. Female oral IgM levels were higher than male (p=0.056). Conclusion: Important to transmission and disease course, oral viral replication and persistence showed clear relationships with select symptoms, early Ig responses, and gender during early infection. N-antigen cross-reactivity may reflect mimicry of structurally analogous host proteins.

4.
Genome Biol Evol ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232518

RESUMO

Horizontal gene transfer (HGT) is a major contributor to bacterial genome evolution, generating phenotypic diversity, driving the expansion of protein families, and facilitating the evolution of new phenotypes, new metabolic pathways, and new species. Comparative studies of gene gain in bacteria suggest that the frequency with which individual genes successfully undergo HGT varies considerably and may be associated with the number of protein-protein interactions in which the gene participates, that is, its connectivity. Two nonexclusive hypotheses have emerged to explain why transferability should decrease with connectivity: the complexity hypothesis (Jain R, Rivera MC, Lake JA. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 96:3801-3806.) and the balance hypothesis (Papp B, Pál C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194-197.). These hypotheses predict that the functional costs of HGT arise from a failure of divergent homologs to make normal protein-protein interactions or from gene misexpression, respectively. Here we describe genome-wide assessments of these hypotheses in which we used 74 existing prokaryotic whole genome shotgun libraries to estimate rates of horizontal transfer of genes from taxonomically diverse prokaryotic donors into Escherichia coli. We show that 1) transferability declines as connectivity increases, 2) transferability declines as the divergence between donor and recipient orthologs increases, and that 3) the magnitude of this negative effect of divergence on transferability increases with connectivity. These effects are particularly robust among the translational proteins, which span the widest range of connectivities. Whereas the complexity hypothesis explains all three of these observations, the balance hypothesis explains only the first one.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Bactérias/genética , Células Procarióticas , Escherichia coli/genética
5.
Biology (Basel) ; 12(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237477

RESUMO

The root microbiome is vital in plant development and health and is highly influenced by crop cultural practices. Rose (Rosa sp.) is the most popular cut flower worldwide. Grafting in rose production is a standard practice to increase yield, improve flower quality, or reduce root-associated pests and diseases. 'Natal Brier' is a standard rootstock used in most commercial operations in Ecuador and Colombia, leading countries in producing and exporting ornamentals. It is known that the rose scion genotype affects root biomass and the root exudate profile of grafted plants. However, little is known about the influence of the rose scion genotype on the rhizosphere microbiome. We examined the influence of grafting and scion genotype on the rhizosphere microbiome of the rootstock 'Natal Brier'. The microbiomes of the non-grafted rootstock and the rootstock grafted with two red rose cultivars were assessed using 16S rRNA and ITS sequencing. Grafting changed microbial community structure and function. Further, analysis of grafted plant samples revealed that the scion genotype highly influences the rootstock microbiome. Under the presented experimental conditions, the rootstock 'Natal Brier' core microbiome consisted of 16 bacterial and 40 fungal taxa. Our results highlight that the scion genotype influences root microbe's recruitment, which might also influence the functionality of assembled microbiomes.

6.
Mol Ecol Resour ; 23(6): 1442-1457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939021

RESUMO

Although plastid genome (plastome) structure is highly conserved across most seed plants, investigations during the past two decades have revealed several disparately related lineages that experienced substantial rearrangements. Most plastomes contain a large inverted repeat and two single-copy regions, and a few dispersed repeats; however, the plastomes of some taxa harbour long repeat sequences (>300 bp). These long repeats make it challenging to assemble complete plastomes using short-read data, leading to misassemblies and consensus sequences with spurious rearrangements. Single-molecule, long-read sequencing has the potential to overcome these challenges, yet there is no consensus on the most effective method for accurately assembling plastomes using long-read data. We generated a pipeline, plastid Genome Assembly Using Long-read data (ptGAUL), to address the problem of plastome assembly using long-read data from Oxford Nanopore Technologies (ONT) or Pacific Biosciences platforms. We demonstrated the efficacy of the ptGAUL pipeline using 16 published long-read data sets. We showed that ptGAUL quickly produces accurate and unbiased assemblies using only ~50× coverage of plastome data. Additionally, we deployed ptGAUL to assemble four new Juncus (Juncaceae) plastomes using ONT long reads. Our results revealed many long repeats and rearrangements in Juncus plastomes compared with basal lineages of Poales. The ptGAUL pipeline is available on GitHub: https://github.com/Bean061/ptgaul.


Assuntos
Genomas de Plastídeos , Sequências Repetitivas de Ácido Nucleico , Rearranjo Gênico , Plastídeos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
7.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972331

RESUMO

Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.


Assuntos
Proteínas de Drosophila , Animais , Masculino , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Drosophila/genética , Feromônios/metabolismo , Células Receptoras Sensoriais/metabolismo , Expressão Gênica , Drosophila melanogaster/genética
8.
Microorganisms ; 11(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838364

RESUMO

Microbial communities in the rhizosphere influence nutrient acquisition and stress tolerance. How abiotic and biotic factors impact the plant microbiome in the wild has not been thoroughly addressed. We studied how plant genotype and soil affect the rhizosphere microbiome of Vaccinium floribundum, an endemic species of the Andean region that has not been domesticated or cultivated. Using high-throughput sequencing of the 16S rRNA and ITS region, we characterized 39 rhizosphere samples of V. floribundum from four plant genetic clusters in two soil regions from the Ecuadorian Highlands. Our results showed that Proteobacteria and Acidobacteria were the most abundant bacterial phyla and that fungal communities were not dominated by any specific taxa. Soil region was the main predictor for bacterial alpha diversity, phosphorous and lead being the most interesting edaphic factors explaining this diversity. The interaction of plant genotype and altitude was the most significant factor associated with fungal diversity. This study highlights how different factors govern the assembly of the rhizosphere microbiome of a wild plant. Bacterial communities depend more on the soil and its mineral content, while plant genetics influence the fungal community makeup. Our work illustrates plant-microbe associations and the drivers of their variation in a unique unexplored ecosystem from the Ecuadorian Andes.

9.
Nat Microbiol ; 7(11): 1817-1833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266335

RESUMO

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes iadDE as necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon's MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products: iac-like and iad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizing Arabidopsis plants show that while all degrade IAA, only strains containing iad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests that iad-like operon-containing bacterial strains, including Variovorax species, play a key ecological role in modulating auxins in the plant microbiome.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Plantas/metabolismo
10.
Cell Rep Med ; 3(6): 100644, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617957

RESUMO

Over the last decade, sequencing of primary tumors has clarified the genetic underpinnings of Wilms tumor but has not affected therapy, outcome, or toxicity. We now sharpen our focus on relapse samples from the umbrella AREN03B2 study. We show that over 40% of relapse samples contain mutations in SIX1 or genes of the MYCN network, drivers of progenitor proliferation. Not previously seen in large studies of primary Wilms tumors, DIS3 and TERT are now identified as recurrently mutated. The analysis of primary-relapse tumor pairs suggests that 11p15 loss of heterozygosity (and other copy number changes) and mutations in WT1 and MLLT1 typically occur early, but mutations in SIX1, MYCN, and WTX are late developments in some individuals. Most strikingly, 75% of relapse samples had gain of 1q, providing strong conceptual support for studying circulating tumor DNA in clinical trials to better detect 1q gain earlier and monitor response.


Assuntos
Neoplasias Renais , Tumor de Wilms , Criança , Genes do Tumor de Wilms , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Renais/genética , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia/genética , Tumor de Wilms/genética
11.
PLoS One ; 17(4): e0267353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468150

RESUMO

BACKGROUND: Early in the pandemic, transmission risk from asymptomatic infection was unclear, making it imperative to monitor infection in workplace settings. Further, data on SARS-CoV-2 seroprevalence within university populations has been limited. METHODS: We performed a longitudinal study of University research employees on campus July-December 2020. We conducted questionnaires on COVID-19 risk factors, RT-PCR testing, and SARS-CoV-2 serology using an in-house spike RBD assay, laboratory-based Spike NTD assay, and standard nucleocapsid platform assay. We estimated prevalence and cumulative incidence of seroconversion with 95% confidence intervals using the inverse of the Kaplan-Meier estimator. RESULTS: 910 individuals were included in this analysis. At baseline, 6.2% (95% CI 4.29-8.19) were seropositive using the spike RBD assay; four (0.4%) were seropositive using the nucleocapsid assay, and 44 (4.8%) using the Spike NTD assay. Cumulative incidence was 3.61% (95% CI: 2.04-5.16). Six asymptomatic individuals had positive RT-PCR results. CONCLUSIONS: Prevalence and incidence of SARS-CoV-2 infections were low; however, differences in target antigens of serological tests provided different estimates. Future research on appropriate methods of serological testing in unvaccinated and vaccinated populations is needed. Frequent RT-PCR testing of asymptomatic individuals is required to detect acute infections, and repeated serosurveys are beneficial for monitoring subclinical infection.


Assuntos
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Estudos Longitudinais , Pandemias , Estudos Prospectivos , SARS-CoV-2/genética , Estudos Soroepidemiológicos
12.
JCO Precis Oncol ; 6: e2100326, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442720

RESUMO

PURPOSE: Most cases of pediatric acute leukemia occur in low- and middle-income countries, where health centers lack the tools required for accurate diagnosis and disease classification. Recent research shows the robustness of using unbiased short-read RNA sequencing to classify genomic subtypes of acute leukemia. Compared with short-read sequencing, nanopore sequencing has low capital and consumable costs, making it suitable for use in locations with limited health infrastructure. MATERIALS AND METHODS: We show the feasibility of nanopore mRNA sequencing on 134 cryopreserved acute leukemia specimens (26 acute myeloid leukemia [AML], 73 B-lineage acute lymphoblastic leukemia [B-ALL], 34 T-lineage acute lymphoblastic leukemia, and one acute undifferentiated leukemia). Using multiple library preparation approaches, we generated long-read transcripts for each sample. We developed a novel composite classification approach to predict acute leukemia lineage and major B-ALL and AML molecular subtypes directly from gene expression profiles. RESULTS: We demonstrate accurate classification of acute leukemia samples into AML, B-ALL, or T-lineage acute lymphoblastic leukemia (96.2% of cases are classifiable with a probability of > 0.8, with 100% accuracy) and further classification into clinically actionable genomic subtypes using shallow RNA nanopore sequencing, with 96.2% accuracy for major AML subtypes and 94.1% accuracy for major B-lineage acute lymphoblastic leukemia subtypes. CONCLUSION: Transcriptional profiling of acute leukemia samples using nanopore technology for diagnostic classification is feasible and accurate, which has the potential to improve the accuracy of cancer diagnosis in low-resource settings.


Assuntos
Leucemia Mieloide Aguda , Sequenciamento por Nanoporos , Nanoporos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Doença Aguda , Criança , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , RNA Mensageiro/genética
14.
J Clin Microbiol ; 60(3): e0128821, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-34985985

RESUMO

Genomic sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to provide valuable insight into the ever-changing variant makeup of the COVID-19 pandemic. More than three million SARS-CoV-2 genome sequences have been deposited in Global Initiative on Sharing All Influenza Data (GISAID), but contributions from the United States, particularly through 2020, lagged the global effort. The primary goal of clinical microbiology laboratories is seldom rooted in epidemiologic or public health testing, and many laboratories do not contain in-house sequencing technology. However, we recognized the need for clinical microbiologists to lend expertise, share specimen resources, and partner with academic laboratories and sequencing cores to assist in SARS-CoV-2 epidemiologic sequencing efforts. Here, we describe two clinical and academic laboratory collaborations for SARS-CoV-2 genomic sequencing. We highlight roles of the clinical microbiologists and the academic laboratories, outline best practices, describe two divergent strategies in accomplishing a similar goal, and discuss the challenges with implementing and maintaining such programs.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Laboratórios , Pandemias , SARS-CoV-2/genética
15.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279216

RESUMO

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


Assuntos
Drosophila melanogaster/genética , Tamanho do Genoma , Genômica/métodos , Animais , Linhagem Celular , Cromossomos , Biologia Computacional/métodos , Feminino , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos
16.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879573

RESUMO

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Assuntos
Microbiota/fisiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Imunidade , Microbiota/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose/imunologia , Virulência
17.
Mol Ecol ; 30(10): 2404-2416, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740826

RESUMO

Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.


Assuntos
Microbiota , Micobioma , Parasitos , Doenças Parasitárias , Animais , Interações Hospedeiro-Parasita , Microbiota/genética , Parasitos/genética
18.
Cell Host Microbe ; 29(4): 620-634.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713601

RESUMO

Immune systems respond to "non-self" molecules termed microbe-associated molecular patterns (MAMPs). Microbial genes encoding MAMPs have adaptive functions and are thus evolutionarily conserved. In the presence of a host, these genes are maladaptive and drive antagonistic pleiotropy (AP) because they promote microbe elimination by activating immune responses. The role AP plays in balancing the functionality of MAMP-coding genes against their immunogenicity is unknown. To address this, we focused on an epitope of flagellin that triggers antibacterial immunity in plants. Flagellin is conserved because it enables motility. Here, we decode the immunogenic and motility profiles of this flagellin epitope and determine the spectrum of amino acid mutations that drives AP. We discover two synthetic mutational tracks that undermine the detection activities of a plant flagellin receptor. These tracks generate epitopes with either antagonist or weaker agonist activities. Finally, we find signatures of these tracks layered atop each other in natural Pseudomonads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/imunologia , Epitopos/genética , Flagelina/genética , Imunidade , Doenças das Plantas
19.
Cell Host Microbe ; 29(4): 635-649.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713602

RESUMO

Immune systems restrict microbial pathogens by identifying "non-self" molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.


Assuntos
Epitopos/imunologia , Flagelina/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Vegetal , Bactérias/genética , Imunidade , Microbiota , Peptídeos , Ralstonia , Simbiose
20.
Nature ; 591(7850): 451-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561864

RESUMO

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Administração Oral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/imunologia , Quimioprevenção , Quirópteros/virologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Citidina/administração & dosagem , Citidina/uso terapêutico , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Transplante de Pulmão , Masculino , Camundongos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...