Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PeerJ ; 8: e9218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617188

RESUMO

Seafood mislabeling occurs when a market label is inaccurate, primarily in terms of species identity, but also regarding weight, geographic origin, or other characteristics. This widespread problem allows cheaper or illegally-caught species to be marketed as species desirable to consumers. Previous studies have identified red snapper (Lutjanus campechanus) as one of the most frequently mislabeled seafood species in the United States. To quantify how common mislabeling of red snapper is across North Carolina, the Seafood Forensics class at the University of North Carolina at Chapel Hill used DNA barcoding to analyze samples sold as "red snapper" from restaurants, seafood markets, and grocery stores purchased in ten counties. Of 43 samples successfully sequenced and identified, 90.7% were mislabeled. Only one grocery store chain (of four chains tested) accurately labeled red snapper. The mislabeling rate for restaurants and seafood markets was 100%. Vermilion snapper (Rhomboplites aurorubens) and tilapia (Oreochromis aureus and O. niloticus) were the species most frequently substituted for red snapper (13 of 39 mislabeled samples for both taxa, or 26 of 39 mislabeled total). This study builds on previous mislabeling research by collecting samples of a specific species in a confined geographic region, allowing local vendors and policy makers to better understand the scope of red snapper mislabeling in North Carolina. This methodology is also a model for other academic institutions to engage undergraduate researchers in mislabeling data collection, sample processing, and analysis.

2.
Inorg Chem ; 57(21): 13300-13311, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351064

RESUMO

Compositional tuning of nanoscale complex metal oxides (CMOs) can lead to enhanced performance and favorable properties for a variety of energy-related applications. However, investigations of the nanoscale CMOs used in energy storage technologies demonstrate that these nanomaterials may have an adverse biological impact, highlighting a fundamental knowledge gap between nanomaterial design and the structure and properties at the end of life. CMO nanomaterials can enter the environment due to improper disposal, where they undergo subsequent (as of yet poorly understood) nanoscale transformations that may affect biological response and, ultimately, environmental fate. This points to the need for studies at the nano-bio interface that can be used to shape rules for the redesign of CMOs: materials that are are potentially more benign by design and serve as examples of sustainable nanotechnology. The example given here is to enrich lithium nickel manganese cobalt oxide, Li x(Ni yMn zCo1- y- z)O2 (NMC), with Mn to create a family of materials that are less expensive and potentially less toxic to a wide range of organisms. In this paper, we investigate the structure and electronic states of Mn-rich NMC at the density functional theory (DFT) level to elucidate the interplay of redox properties, oxidation state, and coordination environment of a compositionally tuned CMO. We find that the oxidation states of Ni and Co remain mostly unaffected while Mn exists as both Mn2+ and Mn4+. Our models show that the ratio of Mn2+ and Mn4+ varies with changes in the coordination environment, such as the identity of neighboring atoms and surface OH group coverage. The surface metal release properties of Mn-rich NMC compositions are predicted using a DFT + solvent ion model and show that Mn-rich NMC compositions are inherently more prone to dissolution than NMC and that this is attributed to the changes in oxidation state of the transition metals in Mn-rich NMC.

3.
Environ Sci Technol ; 52(10): 5792-5802, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29653050

RESUMO

The rapid increase in use of Li-ion batteries in portable electronics has created a pressing need to understand the environmental impact and long-term fate of electonic waste (e-waste) products such as heavy and/or reactive metals. The type of e-waste that we focus on here are the complex metal oxide nanomaterials that compose Li-ion battery cathodes. While in operation the complex metal oxides are in a hermetically sealed container. However, at the end of life, improper disposal can cause structural transformations such as dissolution and metal leaching, resulting in a significant exposure risk to the surrounding environment. The transformations that occur between operational to environmental settings gives rise to a stark knowledge gap between macroscopic design and molecular-level behavior. In this study we use theory and modeling to describe and explain previously published experimental data for cation release from Li(Ni1/3Mn1/3Co1/3)O2 (NMC) nanoparticles in an aqueous environment ( Chem. Mater. 2016 (28) 1092-1100). To better understand the transformations that may occur when this material is exposed to the environment, we compute the free energy of surface dissolution, Δ G, from the complex metal oxide NMC for a range of surface terminations and pH.


Assuntos
Metais , Óxidos , Cátions , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA