Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766400

RESUMO

The Asian hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), is an invasive hornet that was accidentally introduced into Europe in 2004. It mainly preys on other invertebrates and arthropod species, and often targets honey bee (Apis mellifera) colonies. The introduction of these hornets may damage indigenous fauna and apiculture. Knowledge of V. velutina prey preference and the species composition of their diet is relatively limited. In this study, we assessed methodologies for the molecular identification of prey using dissected larvae from destroyed nests. Ten larval samples were taken from five nests in areas where the hornets had not yet established: two from the Channel Islands and three in the mainland UK. DNA was extracted from the gut contents and sequenced and analysed by metabarcoding with Oxford Nanopore Technologies' Flongle and MinION devices. Numerous taxa were detected in each larval sample with the species composition varying by individual and by nest. Between 15 and 26 species were found per nest, with wasps (Vespula spp.), spiders, honey bees and blow flies being the most abundant taxa. These results demonstrate that metabarcoding larval gut contents can be used to study the Asian hornet diet and give a first snapshot of the prey items captured by V. v. nigrithorax in the UK. This method could be used for future large-scale testing of the gut contents of hornet nests, in order to provide a greater insight into the foraging behaviour of this predator across Europe and elsewhere.

2.
Sci Rep ; 10(1): 19553, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177635

RESUMO

Vespa velutina nigrithorax is an invasive species of hornet accidentally introduced into Europe in 2004. It feeds on invertebrates, including honey bees, and represents a threat to European apiculture. In 2016, the first nest of this hornet was detected and destroyed on mainland UK. A further 8 nests were discovered between 2016 and 2019. Nest dissection was performed on all nests together with microsatellite analyses of different life stages found in the nests to address the reproductive output and success of nests found in the UK. None of the nests had produced the next generation of queens. Follow-up monitoring in those regions detected no new nests in the following years. Diploid males were found in many UK nests, while microsatellite analysis showed that nests had low genetic diversity and the majority of queens had mated with one or two males. All UK nests derived from the European zone of secondary colonisation, rather than from the native range of the species. None of the nests discovered so far have been direct offspring of another UK nest. The evidence suggests that these nests were separate incursions from a continental population rather than belonging to a single established UK population of this pest.


Assuntos
Vespas/fisiologia , Animais , Criação de Abelhas , Abelhas , Feminino , Variação Genética , Espécies Introduzidas/estatística & dados numéricos , Repetições de Microssatélites , Reino Unido , Vespas/genética
3.
PLoS One ; 12(9): e0185172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28950004

RESUMO

The yellow-legged or Asian hornet (Vespa velutina colour form nigrithorax) was introduced into France from China over a decade ago. Vespa velutina has since spread rapidly across Europe, facilitated by suitable climatic conditions and the ability of a single nest to disperse many mated queens over a large area. Yellow-legged hornets are a major concern because of the potential impact they have on populations of many beneficial pollinators, most notably the western honey bee (Apis mellifera), which shows no effective defensive behaviours against this exotic predator. Here, we present the first report of this species in Great Britain. Actively foraging hornets were detected at two locations, the first around a single nest in Gloucestershire, and the second a single hornet trapped 54 km away in Somerset. The foraging activity observed in Gloucestershire was largely restricted to within 700 m of a single nest, suggesting highly localised movements. Genetic analyses of individuals from the Gloucestershire nest and the single hornet from Somerset suggest that these incursions represent an expansion of the European population, rather than a second incursion from Asia. The founding queen of the Gloucestershire nest mated with a single male, suggesting that sexual reproduction may have occurred in an area of low nest density. Whilst the nest contained diploid adult males, haploid 'true' males were only present at the egg stage, indicating that the nest was detected and removed before the production of queens. Members of the public reported additional dead hornets associated with camping equipment recently returned from France and imported timber products, highlighting possible pathways of incursion. The utility of microsatellites to inform surveillance during an incursion and the challenge of achieving eradication of this damaging pest are discussed.


Assuntos
Vespas/fisiologia , Animais , Feminino , Espécies Introduzidas , Masculino , Reino Unido , Vespas/classificação
4.
J Hered ; 108(1): 25-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729448

RESUMO

The first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss-Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion. The metacentric races are characterized by highly reduced diploid numbers (2n = 22-26) resulting from Robertsonian fusions, perhaps modified by whole-arm reciprocal translocations. The races hybridize and the whole Poschiavo-Valtellina area can be considered a "hybrid zone." The studies of this area have provided insights into origin of races within hybrid zones, gene flow within hybrid zones and the possibility of speciation in hybrid zones. This provides a case study of how chromosomal rearrangements may impact the genetic structure of populations and their diversification.


Assuntos
Cromossomos de Mamíferos , Variação Genética , Genética Populacional , Hibridização Genética , Animais , Bandeamento Cromossômico , Evolução Molecular , Feminino , Masculino , Camundongos , Modelos Genéticos
5.
Chromosome Res ; 24(2): 271-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048372

RESUMO

The importance of chromosomal rearrangements for speciation can be inferred from studies of genetic exchange between hybridising chromosomal races within species. Reduced fertility or recombination suppression in karyotypic hybrids has the potential to maintain or promote genetic differentiation in genomic regions near rearrangement breakpoints. We studied genetic exchange between two hybridising groups of chromosomal races of house mouse in Upper Valtellina (Lombardy, Italy), using microsatellites. These groups differ by Robertsonian fusions and/or whole-arm reciprocal translocations such that F1 hybrids have a chain-of-five meiotic configuration. Previous studies showed genetic differentiation in two chromosomes in the chain-of-five (10 and 12) close to their centromeres (i.e. the rearrangement breakpoints); we have shown here that the centromeric regions of the other two chromosomes in the chain (2 and 8) are similarly differentiated. The internal chromosomes of the chain (8 and 12) show the greatest differentiation, which may reflect pairing and recombination properties of internal and external elements in a meiotic chain. Importantly, we found that centromeric regions of some non-rearranged chromosomes also showed genetic differentiation between the hybridising groups, indicating a complex interplay between chromosomal rearrangements and other parts of the genome in maintaining or promoting differentiation and potentially driving speciation between chromosomal races.


Assuntos
Especiação Genética , Hibridização Genética/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Recombinação Genética/genética , Animais , Cromossomos/genética , Variação Genética , Genética Populacional , Cariótipo , Camundongos
6.
PeerJ ; 3: e1458, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664802

RESUMO

The brown rat (Rattus norvegicus) is a relatively recent (<300 years) addition to the British fauna, but by association with negative impacts on public health, animal health and agriculture, it is regarded as one of the most important vertebrate pest species. Anticoagulant rodenticides were introduced for brown rat control in the 1950s and are widely used for rat control in the UK, but long-standing resistance has been linked to control failures in some regions. One thus far ignored aspect of resistance biology is the population structure of the brown rat. This paper investigates the role population structure has on the development of anticoagulant resistance. Using mitochondrial and microsatellite DNA, we examined 186 individuals (from 15 counties in England and one location in Wales near the Wales-England border) to investigate the population structure of rural brown rat populations. We also examined individual rats for variations of the VKORC1 gene previously associated with resistance to anticoagulant rodenticides. We show that the populations were structured to some degree, but that this was only apparent in the microsatellite data and not the mtDNA data. We discuss various reasons why this is the case. We show that the population as a whole appears not to be at equilibrium. The relative lack of diversity in the mtDNA sequences examined can be explained by founder effects and a subsequent spatial expansion of a species introduced to the UK relatively recently. We found there was a geographical distribution of resistance mutations, and relatively low rate of gene flow between populations, which has implications for the development and management of anticoagulant resistance.

7.
Trends Genet ; 29(5): 298-308, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23290437

RESUMO

The long-distance movements made by humans through history are quickly erased by time but can be reconstructed by studying the genetic make-up of organisms that travelled with them. The phylogeography of the western house mouse (Mus musculus domesticus), whose current widespread distribution around the world has been caused directly by the movements of (primarily) European people, has proved particularly informative in a series of recent studies. The geographic distributions of genetic lineages in this commensal have been linked to the Iron Age movements within the Mediterranean region and Western Europe, the extensive maritime activities of the Vikings in the 9th to 11th centuries, and the colonisation of distant landmasses and islands by the Western European nations starting in the 15th century. We review here recent insights into human history based on phylogeographic studies of mice and other species that have travelled with humans, and discuss how emerging genomic methodologies will increase the precision of these inferences.


Assuntos
Variação Genética , Migração Humana , Camundongos/genética , Linhagem , Filogeografia , Animais , DNA Mitocondrial/genética , Genética Populacional , Geografia , Humanos , Filogenia
8.
Open Biol ; 2(4): 120054, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22724064

RESUMO

The black grouse (Tetrao tetrix) is a galliform bird species that is important for both ecological studies and conservation genetics. Here, we report the sequencing of the spleen transcriptome of black grouse using 454 GS FLX Titanium sequencing. We performed a large-scale gene discovery analysis with a focus on genes that might be related to fitness in this species and also identified a large set of microsatellites. In total, we obtained 182 179 quality-filtered sequencing reads that we assembled into 9035 contigs. Using these contigs and 15 794 length-filtered (greater than 200 bp) singletons, we identified 7762 transcripts that appear to be homologues of chicken genes. A specific BLAST search with an emphasis on immune genes found 308 homologous chicken genes that have immune function, including ten major histocompatibility complex-related genes located on chicken chromosome 16. We also identified 1300 expressed sequence tag microsatellites and were able to design suitable flanking primers for 526 of these. A preliminary test of the polymorphism of the microsatellites found 10 polymorphic microsatellites of the 102 tested. Genomic resources generated in this study should greatly benefit future ecological, evolutionary and conservation genetic studies on this species.


Assuntos
Galliformes/genética , Galliformes/imunologia , Repetições de Microssatélites , Animais , Sequência de Bases , Galinhas/genética , Galinhas/imunologia , DNA/genética , Etiquetas de Sequências Expressas , Complexo Principal de Histocompatibilidade , Polimorfismo Genético , Especificidade da Espécie , Transcriptoma
9.
Mol Ecol ; 19(23): 5252-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21044192

RESUMO

We investigated the distributions and routes of colonization of two commensal subspecies of house mouse in Norway: Mus musculus domesticus and M. m. musculus. Five nuclear markers (Abpa, D11 cenB2, Btk, SMCY and Zfy2) and a morphological feature (tail length) were used to differentiate the two subspecies and assess their distributions, and mitochondrial (mt) D-loop sequences helped to elucidate their colonization history. M. m. domesticus is the more widespread of the two subspecies, occupying the western and southern coast of Norway, while M. m. musculus is found along Norway's southeastern coast and east from there to Sweden. Two sections of the hybrid zone between the two subspecies were localized in Norway. However, hybrid forms also occur well away from that hybrid zone, the most prevalent of which are mice with a M. m. musculus-type Y chromosome and an otherwise M. m. domesticus genome. MtDNA D-loop sequences of the mice revealed a complex phylogeography within M. m. domesticus, reflecting passive human transport to Norway, probably during the Viking period. M. m. musculus may have colonized earlier. If so, that leaves open the possibility that M. m. domesticus replaced M. m. musculus from much of Norway, with the widely distributed hybrids a relict of this process. Overall, the effects of hybridization are evident in house mice throughout Norway.


Assuntos
Hibridização Genética , Camundongos/genética , Filogeografia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Camundongos/anatomia & histologia , Noruega , Análise de Sequência de DNA
10.
BMC Biol ; 8: 131, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977781

RESUMO

Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Camundongos/fisiologia , Adaptação Biológica/genética , Animais , Demografia , Emigração e Imigração , Europa (Continente) , Humanos , Ilhas do Oceano Índico
11.
Proc Biol Sci ; 276(1655): 209-17, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18826937

RESUMO

Molecular markers and morphological characters can help infer the colonization history of organisms. A combination of mitochondrial (mt) D-loop DNA sequences, nuclear DNA data, external measurements and skull characteristics shows that house mice (Mus musculus) in New Zealand and its outlying islands are descended from very diverse sources. The predominant genome is Mus musculus domesticus (from western Europe), but Mus musculus musculus (from central Europe) and Mus musculus castaneus (from southern Asia) are also represented genetically. These subspecies have hybridized to produce combinations of musculus and domesticus nuclear DNA coupled with domesticus mtDNA, and castaneus or musculus mtDNA with domesticus nuclear DNA. The majority of the mice with domesticus mtDNA that we sampled had D-loop sequences identical to two haplotypes common in Britain. This is consistent with long-term British-New Zealand cultural linkages. The origins of the castaneus mtDNA sequences widespread in New Zealand are less easy to identify.


Assuntos
Geografia , Camundongos/genética , Filogenia , Animais , Ásia , DNA Mitocondrial/química , Europa (Continente) , Marcadores Genéticos , Haplótipos , Hibridização Genética , Camundongos/classificação , Nova Zelândia , Análise de Sequência de DNA
12.
Proc Biol Sci ; 276(1655): 201-7, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18826939

RESUMO

The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.


Assuntos
Geografia , Camundongos/genética , Filogenia , Animais , DNA Mitocondrial/química , Humanos , Irlanda , Camundongos/classificação , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...