Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0255411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411107

RESUMO

Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10-17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.


Assuntos
Ciência do Cidadão , Ecossistema , Rios , Nitrogênio , Fósforo , Qualidade da Água
2.
Front Microbiol ; 11: 491425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324353

RESUMO

Stream bacterioplankton communities, a crucial component of aquatic ecosystems and surface water quality, are shaped by environmental selection (i.e., changes in taxa abundance associated with more or less favorable abiotic conditions) and passive dispersal (i.e., organisms' abundance and distribution is a function of the movement of the water). These processes are a function of hydrologic conditions such as residence time and water chemistry, which are mediated by human infrastructure. To quantify the role of environmental conditions, dispersal, and human infrastructure (dams) on stream bacterioplankton, we measured bacterioplankton community composition in rivers from sub-alpine to urban environments in three watersheds (Utah, United States) across three seasons. Of the 53 environmental parameters measured (including physicochemical parameters, solute concentrations, and catchment characteristics), trace element concentrations explained the most variability in bacterioplankton community composition using Redundancy Analysis ordination. Trace elements may correlate with bacterioplankton due to the commonality in source of water and microorganisms, and/or environmental selection creating more or less favorable conditions for bacteria. Bacterioplankton community diversity decreased downstream along parts of the stream continuum but was disrupted where large reservoirs increased water residence time by orders of magnitude, potentially indicating a shift in the relative importance of environmental selection and dispersal at these sites. Reservoirs also had substantial effects on community composition, dissimilarity (Bray-Curtis distance) and species interactions as indicated by co-occurrence networks. Communities downstream of reservoirs were enriched with anaerobic Sporichthyaceae, methanotrophic Methylococcaceae, and iron-transforming Acidimicrobiales, suggesting alternative metabolic pathways became active in the hypolimnion of large reservoirs. Our results identify that human activity affects river microbial communities, with potential impacts on water quality through modified biogeochemical cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...