Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832920

RESUMO

The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.

2.
Science ; 378(6617): 317-322, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264797

RESUMO

In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified mitochondrial carrier homolog 2 (MTCH2), and its paralog MTCH1, and showed that it is required for insertion of biophysically diverse tail-anchored (TA), signal-anchored, and multipass proteins, but not outer membrane ß-barrel proteins. Purified MTCH2 was sufficient to mediate insertion into reconstituted proteoliposomes. Functional and mutational studies suggested that MTCH2 has evolved from a solute carrier transporter. MTCH2 uses membrane-embedded hydrophilic residues to function as a gatekeeper for the outer membrane, controlling mislocalization of TAs into the endoplasmic reticulum and modulating the sensitivity of leukemia cells to apoptosis. Our identification of MTCH2 as an insertase provides a mechanistic explanation for the diverse phenotypes and disease states associated with MTCH2 dysfunction.


Assuntos
Apoptose , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Humanos , Retículo Endoplasmático/metabolismo , Células K562
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...