Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2342: 257-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272698

RESUMO

Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.


Assuntos
Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Inibidores Enzimáticos/química , Aldeído Oxidase/antagonistas & inibidores , Animais , Catálise , Cães , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Relação Estrutura-Atividade , Superóxidos/metabolismo
2.
Drug Metab Dispos ; 49(3): 202-211, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355213

RESUMO

All-trans-retinoic acid (atRA) is a critical endogenous signaling molecule. atRA is predominantly synthesized from retinaldehyde by aldehyde dehydrogenase 1A1 (ALDH1A1), but aldehyde oxidase (AOX) may also contribute to atRA biosynthesis. The goal of this study was to test the hypothesis that AOX contributes significantly to atRA formation in human liver. Human recombinant AOX formed atRA from retinaldehyde (Km ∼1.5 ± 0.4 µM; kcat ∼3.6 ± 2.0 minute-1). In human liver S9 fractions (HLS9), atRA formation was observed in the absence of NAD+, suggesting AOX contribution to atRA formation. In the presence of NAD+, Eadie-Hofstee plots of atRA formation in HLS9 indicated that two enzymes contributed to atRA formation. The two enzymes were identified as AOX and ALDH1A1 based on inhibition of atRA formation by AOX inhibitor hydralazine (20%-50% inhibition) and ALDH1A1 inhibitor WIN18,446 (50%-80%inhibition). The expression of AOX in HLS9 was 9.4-24 pmol mg-1 S9 protein, whereas ALDH1A1 expression was 156-285 pmol mg-1 S9 protein measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantification of signature peptides. The formation velocity of atRA in the presence of NAD+ correlated significantly with the expression of ALDH1A1 and AOX protein. Taken together, the data show that both AOX and ALDH1A1 contribute to atRA biosynthesis in the human liver, with ALDH1A1 being the high-affinity, low-capacity enzyme and AOX being the low-affinity, high-capacity enzyme. The results suggest that in the case of ALDH1A dysfunction or excess vitamin A, AOX may play an important role in regulating hepatic vitamin A homeostasis and that inhibition of AOX may alter atRA biosynthesis and signaling. SIGNIFICANCE STATEMENT: This study provides direct evidence to show that human AOX converts retinaldehyde to atRA and contributes to hepatic atRA biosynthesis. The finding that AOX may be responsible for 20%-50% of overall hepatic atRA formation suggests that alterations in AOX activity via drug-drug interactions, genetic polymorphisms, or disease states may impact hepatic atRA concentrations and signaling and alter vitamin A homeostasis.


Assuntos
Aldeído Oxidase/biossíntese , Fígado/metabolismo , Tretinoína/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Criança , Relação Dose-Resposta a Droga , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia
3.
Drug Metab Dispos ; 48(12): 1364-1371, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020066

RESUMO

The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.


Assuntos
Aldeído Oxidase/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Aldeído Oxidase/genética , Animais , Dantroleno/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Guanina/análogos & derivados , Guanina/farmacocinética , Macaca fascicularis/genética , Cofatores de Molibdênio , Mutagênese Sítio-Dirigida , Oxirredução , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato/genética
4.
Drug Metab Dispos ; 48(1): 1-7, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31641009

RESUMO

Methylenedioxymethamphetamine (MDMA) is a known drug of abuse and schedule 1 narcotic under the Controlled Substances Act. Previous pharmacokinetic work on MDMA used classic linearization techniques to conclude irreversible mechanism-based inhibition of CYP2D6. The current work challenges this outcome by assessing the possibility of two alternative reversible kinetic inhibition mechanisms known as the quasi-irreversible (QI) model and equilibrium model (EM). In addition, progress curve experiments were used to investigate the residual metabolism of MDMA by liver microsomes and CYP2D6 baculosomes over incubation periods up to 30 minutes. These experiments revealed activity in a terminal linear phase at the fractional rates with respect to initial turnover of 0.0354 ± 0.0089 in human liver microsomes and 0.0114 ± 0.0025 in baculosomes. Numerical model fits to percentage of remaining activity (PRA) data were consistent with progress curve modeling results, wherein an irreversible inhibition pathway was found unnecessary for good fit scoring. Both QI and EM kinetic mechanisms fit the PRA data well, although in CYP2D6 baculosomes the inclusion of an irreversible inactivation pathway did not allow for convergence to a reasonable fit. The kinetic complexity accessible to numerical modeling has been used to determine that MDMA is not an irreversible inactivator of CYP2D6, and instead follows what can be generally referred to as slowly reversible inhibition. SIGNIFICANCE STATEMENT: The work herein describes the usage of computational models to delineate between irreversible and slowly reversible time-dependent inhibition. Such models are used in the paper to analyze MDMA and classify it as a reversible time-dependent inhibitor.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Simulação por Computador , Citocromo P-450 CYP2D6/genética , Humanos , Técnicas In Vitro , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Microssomos Hepáticos/enzimologia , Fatores de Tempo
5.
Drug Metab Dispos ; 47(5): 473-483, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787100

RESUMO

Many promising drug candidates metabolized by aldehyde oxidase (AOX) fail during clinical trial owing to underestimation of their clearance. AOX is species-specific, which makes traditional allometric studies a poor choice for estimating human clearance. Other studies have suggested using half-life calculated by measuring substrate depletion to measure clearance. In this study, we proposed using numerical fitting to enzymatic pathways other than Michaelis-Menten (MM) to avoid missing the initial high turnover rate of product formation. Here, product formation over a 240-minute time course of six AOX substrates-O6-benzylguanine, N-(2-dimethylamino)ethyl)acridine-4-carboxamide, zaleplon, phthalazine, BIBX1382 [N8-(3-Chloro-4-fluorophenyl)-N2-(1-methyl-4-piperidinyl)-pyrimido[5,4-d]pyrimidine-2,8-diamine dihydrochloride], and zoniporide-have been provided to illustrate enzyme deactivation over time to help better understand why MM kinetics sometimes leads to underestimation of rate constants. Based on the data provided in this article, the total velocity for substrates becomes slower than the initial velocity by 3.1-, 6.5-, 2.9-, 32.2-, 2.7-, and 0.2-fold, respectively, in human expressed purified enzyme, whereas the K m remains constant. Also, our studies on the role of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, show that ROS did not significantly alter the change in enzyme activity over time. Providing a new electron acceptor, 5-nitroquinoline, did, however, alter the change in rate over time for mumerous compounds. The data also illustrate the difficulties in using substrate disappearance to estimate intrinsic clearance.


Assuntos
Aldeído Oxidase/metabolismo , Acetamidas/metabolismo , Acridinas/metabolismo , Guanidinas/metabolismo , Humanos , Hidralazina/metabolismo , Cinética , Fígado/metabolismo , Nitroquinolinas/metabolismo , Ftalazinas/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Arch Biochem Biophys ; 659: 85-92, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367827

RESUMO

Human aldehyde oxidase 1 (AOX1) catalyzes the oxidation of various drugs and endogenous compounds. Recently, we found that AOX1 catalyzed the reduction of drugs such as nitrazepam and dantrolene. In this study, we aimed to clarify the substrate selectivity of human AOX1 for the reduction of nitroaromatic drugs to obtain helpful information for drug development. We investigated whether 11 nitroaromatic drugs were reduced by AOX1 using recombinant AOX1 and human liver cytosol (HLC) in the presence of N1-methylnicotinamide, an electron donor to AOX1. We found that clonazepam, flunitrazepam, flutamide, nilutamide, nimesulide, and nimetazepam were substantially reduced by recombinant AOX1 and HLC, whereas azelnidipine, nifedipine, and nimodipine were slightly reduced and metronidazole and tolcapone were not reduced. Via structural analysis, we observed that nitroaromatic drugs reduced by AOX1 possessed a relatively electron-deficient nitro group. Since the addition of NADPH to human liver microsomes (HLM) did not increase the reductase activities of the drugs that were reduced by recombinant AOX1, it was determined that NADPH-dependent enzymes in microsomes, such as cytochrome P450, were not involved in this process. Inhibition studies using known AOX1 inhibitors supported the role of AOX1 in the reduction of drugs in HLC. In conclusion, this provides new information related to the substrate selectivity of human AOX1 for the reduction of nitroaromatic drugs.


Assuntos
Aldeído Oxidase/metabolismo , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/metabolismo , Nitrogênio/química , Humanos , Hidrocarbonetos Aromáticos/farmacocinética , Hidrocarbonetos Aromáticos/toxicidade , Cinética , Oxirredução , Especificidade por Substrato
7.
Biochem Pharmacol ; 156: 86-98, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30114388

RESUMO

We investigate the mechanism of time-dependent inhibition (TDI) of human cytochrome P450 2D6 (CYP2D6) by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), one of the most widespread recreational drugs of abuse. In an effort to unravel the kinetic mechanism of the formation of metabolic inhibitory complex (MIC) of CYP2D6 with MDMA-derived carbene we carried out a series of spectrophotometric studies paralleled with registration of the kinetics of time-dependent inhibition (TDI) in CYP2D6-incorporated proteoliposomes. The high amplitude of spectral signal in this system allowed us to characterize the spectral properties of the formed MIC in details and obtain an accurate spectral signature of MIC formation. This information was then used in the studies with CYP2D6-containing microsomes of insect cells (CYP2D6 Supersomes™). Our results demonstrate that in both systems the formation of the ferrous carbene-derived MIC is relatively slow, reversible and is not associated with the accumulation of the ferric carbene intermediate, as takes place in the case of CYP3A4 and podophylotoxin. Furthermore, the limited amplitude of MIC formation suggests that only a fraction (∼50%) of spectrally detectable CYP2D6 in both proteoliposomes and Supersomes participates in the formation of MIC and is therefore involved in the MDMA metabolism. This observation reveals yet another example of a cytochrome P450 that exhibits persistent functional heterogeneity of its population in microsomal membranes. Our study provides a solid methodological background for further mechanistic studies of MIC formation in human liver microsomes and demonstrates that the potency and physiological relevance of MDMA-dependent TDI of CYP2D6 may be overestimated.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Serotoninérgicos/farmacologia , Dextrometorfano/metabolismo , Dextrometorfano/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Estrutura Molecular , N-Metil-3,4-Metilenodioxianfetamina/química
8.
Biochem Pharmacol ; 151: 69-78, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29522712

RESUMO

Dantrolene is used for malignant hyperthermia during anesthesia, and it sometimes causes severe liver injury as a side effect. Dantrolene is metabolized to acetylaminodantrolene, which is formed via the reduction of dantrolene to aminodantrolene and subsequent acetylation. Formation of hydroxylamine during the metabolic process may be associated with liver injury. We identified the enzymes responsible for dantrolene metabolism in humans to elucidate the mechanism of liver injury. Dantrolene reductase activity was not detected in human liver microsomes, but it was detected in cytosol. Formation was increased in the presence of N1-methylnicotineamide, which is an electron donor to aldehyde oxidase 1 (AOX1). Potent inhibitors of AOX1 and a correlation study with a marker of AOX1 activity, namely phthalazine oxidase activity, in a panel of 28 human liver cytosol samples supported the role of AOX1 in dantrolene reduction. Acetylaminodantrolene formation from aminodantrolene was highly detected in recombinant N-acetyltransferase (NAT) 2 rather than NAT1. A glutathione trapping assay revealed the formation of hydroxylamine via an AOX1-dependent reduction of dantrolene but not via hydroxylation of aminodantrolene. In conclusion, we found that AOX1 and NAT2 were responsible for dantrolene metabolism in humans and that AOX1-dependent metabolism determines dantrolene-induced liver injury.


Assuntos
Aldeído Oxidase/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Dantroleno/metabolismo , Fígado/enzimologia , Fármacos Neuromusculares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citosol/efeitos dos fármacos , Citosol/enzimologia , Dantroleno/efeitos adversos , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Fármacos Neuromusculares/efeitos adversos
9.
Biochem J ; 474(20): 3523-3542, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28904078

RESUMO

Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.


Assuntos
Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Animais , Bovinos , Humanos , Microssomos Hepáticos/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos
10.
ACS Omega ; 2(8): 4820-4827, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28884164

RESUMO

Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO's preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4-trans-(N,N-dimethylamino)cinnamaldehyde, O6-benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of kcat and V/K, which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development.

11.
Biochem Pharmacol ; 145: 210-217, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888950

RESUMO

Aldehyde oxidase (AOX) is a cytosolic enzyme responsible for the metabolism of some drugs and drug candidates. AOX catalyzes the oxidative hydroxylation of substrates including several aliphatic and aromatic aldehydes, and nitrogen-containing heterocyclic compounds. AOX is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite and hydroxamic acids. These reductive transformations are not well understood and are generally believed to only occur at low oxygen concentrations. In this study, we used 5-nitroquinoline (5NQ) as a substrate to further understand both the oxidative and the reductive transformations catalyzed by AOX. In vitro reaction of 5NQ with AOX under aerobic conditions generated the oxidized (2-oxo-5-nitroquinoline, 2-oxo-5NQ), the reduced (5-aminoquinoline, 5AQ) and the oxidized/reduced (2-oxo-5-aminoquinoline, 2-oxo-5AQ) metabolites. Interestingly, in human liver cytosol, co-incubation of 5NQ and known AOX oxidative substrates DACA and phthalazine significantly increased the yield of the reduced metabolite, while oxidized metabolites production decreased. These data indicate that 5NQ can be reduced at atmospheric oxygen concentrations and that the reductive transformation occurs at a second site that is kinetically distinct from the oxidative site.


Assuntos
Aldeído Oxidase/metabolismo , Nitroquinolinas/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Aldeído Oxidase/genética , Anti-Hipertensivos/farmacologia , Domínio Catalítico , Escherichia coli , Humanos , Hidralazina/farmacologia , Cinética , Estrutura Molecular , Nitroquinolinas/química , Oxirredução
12.
Plant Physiol ; 173(1): 417-433, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879392

RESUMO

Class III peroxidases (CIIIPRX) catalyze the oxidation of monolignols, generate radicals, and ultimately lead to the formation of lignin. In general, CIIIPRX genes encode a large number of isozymes with ranges of in vitro substrate specificities. In order to elucidate the mode of substrate specificity of these enzymes, we characterized one of the CIIIPRXs (PviPRX9) from switchgrass (Panicum virgatum), a strategic plant for second-generation biofuels. The crystal structure, kinetic experiments, molecular docking, as well as expression patterns of PviPRX9 across multiple tissues and treatments, along with its levels of coexpression with the majority of genes in the monolignol biosynthesis pathway, revealed the function of PviPRX9 in lignification. Significantly, our study suggested that PviPRX9 has the ability to oxidize a broad range of phenylpropanoids with rather similar efficiencies, which reflects its role in the fortification of cell walls during normal growth and root development and in response to insect feeding. Based on the observed interactions of phenylpropanoids in the active site and analysis of kinetics, a catalytic mechanism involving two water molecules and residues histidine-42, arginine-38, and serine-71 was proposed. In addition, proline-138 and gluntamine-140 at the 137P-X-P-X140 motif, leucine-66, proline-67, and asparagine-176 may account for the broad substrate specificity of PviPRX9. Taken together, these observations shed new light on the function and catalysis of PviPRX9 and potentially benefit efforts to improve biomass conservation properties in bioenergy and forage crops.


Assuntos
Panicum/enzimologia , Peroxidases/química , Peroxidases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cálcio/metabolismo , Cristalografia por Raios X , Ensaios Enzimáticos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Funções Verossimilhança , Metaboloma , Simulação de Acoplamento Molecular , Panicum/genética , Peroxidases/genética , Estrutura Secundária de Proteína , Eletricidade Estática , Especificidade por Substrato
13.
Plant Physiol ; 172(1): 78-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457122

RESUMO

Caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase responsible for methylation of the meta-hydroxyl group of caffeoyl-coenzyme A (CoA) on the pathway to monolignols, with their ring methoxylation status characteristic of guaiacyl or syringyl units in lignin. In order to better understand the unique class of type 2 O-methyltransferases from monocots, we have characterized CCoAOMT from sorghum (Sorghum bicolor; SbCCoAOMT), including the SAM binary complex crystal structure and steady-state enzyme kinetics. Key amino acid residues were validated with site-directed mutagenesis. Isothermal titration calorimetry data indicated a sequential binding mechanism for SbCCoAOMT, wherein SAM binds prior to caffeoyl-CoA, and the enzyme showed allosteric behavior with respect to it. 5-Hydroxyferuloyl-CoA was not a substrate for SbCCoAOMT. We propose a catalytic mechanism in which lysine-180 acts as a catalytic base and deprotonates the reactive hydroxyl group of caffeoyl-CoA. This deprotonation is facilitated by the coordination of the reactive hydroxyl group by Ca(2+) in the active site, lowering the pKa of the 3'-OH group. Collectively, these data give a new perspective on the catalytic mechanism of CCoAOMTs and provide a basis for the functional diversity exhibited by type 2 plant OMTs that contain a unique insertion loop (residues 208-231) conferring affinity for phenylpropanoid-CoA thioesters. The structural model of SbCCoAOMT can serve as the basis for protein engineering approaches to enhance the nutritional, agronomic, and industrially relevant properties of sorghum.


Assuntos
Acil Coenzima A/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/enzimologia , Sequência de Aminoácidos , Biocatálise , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Cinética , Lisina/química , Lisina/genética , Lisina/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sorghum/genética , Especificidade por Substrato , Termodinâmica
14.
Mol Pharm ; 13(8): 2833-43, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27336918

RESUMO

An in vitro observation of time-dependent inhibition (TDI) of metabolic enzymes often results in removing a potential drug from the drug pipeline. However, the accepted method for predicting TDIs of the important drug metabolizing cytochrome P450 enzymes often overestimates the drug interaction potential. Better models that take into account the complexities of the cytochrome P450 enzyme system will lead to better predictions. Herein we report the use of our previously described models for complex kinetics of podophyllotoxin. Spectral characterization of the kinetics indicates that an intermediate MI complex is formed, which slowly progresses to an essentially irreversible MI complex. The intermediate MI complex can release free enzyme during the time course of a typical 30 min TDI experiment. This slow rate of MI complex conversion results in an overprediction of the kinact value if this process is not included in the analysis of the activity versus time profile. In vitro kinetic experiments in rat liver microsomes predicted a lack of drug interaction between podophyllotoxin and midazolam. In vivo rat pharmacokinetic studies confirmed this lack of drug interaction.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Podofilotoxina/farmacologia , Animais , Compostos Benzidrílicos/farmacologia , Cromatografia Líquida , Humanos , Cinética , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Modelos Teóricos , Ratos , Ratos Sprague-Dawley
15.
J Phys Chem B ; 120(12): 3038-3047, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26939024

RESUMO

Metalloporphyrin containing proteins, such as cytochrome P450, play a key role in biological systems. The spectroscopic properties of metalloporphyrins have been a subject of intense interest and intense debate for over 50 years. Iron-porphyrins are usually believed to be nonfluorescent. Herein we report that, contrary to this belief, cytochrome P450 heme groups luminesce with enough intensity to be of use in the characterization of these enzymes. To confirm that the emission is from the heme, we destroyed the heme by titration with cumene hydroperoxide and measured the changes in emission upon titration with compounds known to bind to the distal face of the heme in two human cytochrome P450 enzymes, known as CYP3A4 and CYP2C9. The titration curves gave spectral dissociation constants that were not significantly different from those reported using the Soret UV/vis absorbance changes. We have tentatively assigned the broad luminescence at ∼500 nm to a (1)ππ* → gs fluorescence and the structured luminescence above 600 nm to a (3)ππ* → gs phosphorescence. These assignments are not associated with the Q-band, and are in violation of Kasha's rule. To illustrate the utility of the emission, we measured spectral dissociation constants for testosterone binding to P450 3A4 in bilayers formed on glass coverslips, a measurement that would be very difficult to make using absorption spectroscopy. Complementary experiments were carried out with water-soluble P450cam.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Luminescência , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
16.
Drug Metab Dispos ; 44(4): 576-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851242

RESUMO

This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function.


Assuntos
Membrana Celular/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Microssomos Hepáticos/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Relatório de Pesquisa , Animais , Sistema Enzimático do Citocromo P-450/química , Retículo Endoplasmático/metabolismo , Humanos , Estrutura Secundária de Proteína
17.
Biochem Pharmacol ; 96(3): 288-95, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26032640

RESUMO

Several drug compounds have failed in clinical trials due to extensive biotransformation by aldehyde oxidase (AOX) (EC 1.2.3.1). One of the main reasons is the difficulty in scaling clearance for drugs metabolised by AOX, from preclinical species to human. Using methotrexate as a probe substrate, we evaluated AOX metabolism in liver cytosol from human and commonly used laboratory species namely guinea pig, monkey, rat and rabbit. We found that the metabolism of methotrexate in rabbit liver cytosol was several orders of magnitude higher than any of the other species tested. The results of protein quantitation revealed that the amount of AOX1 in human liver was similar to rabbit liver. To understand if the observed differences in activity were due to structural differences, we modelled rabbit AOX1 using the previously generated human AOX1 homology model. Molecular docking of methotrexate into the active site of the enzyme led to the identification of important residues that could potentially be involved in substrate binding and account for the observed differences. In order to study the impact of these residue changes on enzyme activity, we used site directed mutagenesis to construct mutant AOX1 cDNAs by substituting nucleotides of human AOX1 with relevant ones of rabbit AOX1. AOX1 mutant proteins were expressed in Escherichia coli. Differences in the kinetic properties of these mutants have been presented in this study.


Assuntos
Aldeído Oxidase/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Fígado/química , Metotrexato/metabolismo , Aldeído Oxidase/química , Sequência de Aminoácidos , Animais , Antimetabólitos Antineoplásicos/química , Domínio Catalítico , Cobaias , Humanos , Cinética , Fígado/enzimologia , Macaca mulatta , Metotrexato/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Coelhos , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Homologia Estrutural de Proteína , Especificidade por Substrato
18.
Neuropharmacology ; 98: 22-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25998277

RESUMO

The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.


Assuntos
Bioquímica , Corantes Fluorescentes , Proteínas de Membrana/metabolismo , Animais , Biofísica , Corantes Fluorescentes/química , Humanos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Processos Estocásticos
19.
Drug Metab Dispos ; 43(6): 908-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25845827

RESUMO

GDC-0834, a Bruton's tyrosine kinase inhibitor investigated as a potential treatment of rheumatoid arthritis, was previously reported to be extensively metabolized by amide hydrolysis such that no measurable levels of this compound were detected in human circulation after oral administration. In vitro studies in human liver cytosol determined that GDC-0834 (R)-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo- 4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b] thiophene-2-carboxamide) was rapidly hydrolyzed with a CLint of 0.511 ml/min per milligram of protein. Aldehyde oxidase (AO) and carboxylesterase (CES) were putatively identified as the enzymes responsible after cytosolic fractionation and mass spectrometry-proteomics analysis of the enzymatically active fractions. Results were confirmed by a series of kinetic experiments with inhibitors of AO, CES, and xanthine oxidase (XO), which implicated AO and CES, but not XO, as mediating GDC-0834 amide hydrolysis. Further supporting the interaction between GDC-0834 and AO, GDC-0834 was shown to be a potent reversible inhibitor of six known AO substrates with IC50 values ranging from 0.86 to 1.87 µM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834.


Assuntos
Aldeído Oxidase/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Drogas em Investigação/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinonas/metabolismo , Tiofenos/metabolismo , Tirosina Quinase da Agamaglobulinemia , Aldeído Oxidase/química , Animais , Anti-Inflamatórios não Esteroides/sangue , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Biocatálise , Domínio Catalítico , Citosol/enzimologia , Citosol/metabolismo , Estabilidade de Medicamentos , Drogas em Investigação/análise , Drogas em Investigação/química , Drogas em Investigação/farmacocinética , Perfilação da Expressão Gênica , Humanos , Hidrólise , Cinética , Fígado/enzimologia , Fígado/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas/sangue , Pirimidinonas/química , Pirimidinonas/farmacocinética , Especificidade por Substrato , Tiofenos/sangue , Tiofenos/química , Tiofenos/farmacocinética
20.
Drug Metab Dispos ; 43(1): 34-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326286

RESUMO

The mechanistic understanding of interactions between diet-derived substances and conventional medications in humans is nascent. Most investigations have examined cytochrome P450-mediated interactions. Interactions mediated by other phase I enzymes are understudied. Aldehyde oxidase (AO) is a phase I hydroxylase that is gaining recognition in drug design and development programs. Taken together, a panel of structurally diverse phytoconstituents (n = 24) was screened for inhibitors of the AO-mediated oxidation of the probe substrate O(6)-benzylguanine. Based on the estimated IC50 (<100 µM), 17 constituents were advanced for Ki determination. Three constituents were described best by a competitive inhibition model, whereas 14 constituents were described best by a mixed-mode model. The latter model consists of two Ki terms, Kis and Kii, which ranged from 0.26-73 and 0.80-120 µM, respectively. Molecular modeling was used to glean mechanistic insight into AO inhibition. Docking studies indicated that the tested constituents bound within the AO active site and elucidated key enzyme-inhibitor interactions. Quantitative structure-activity relationship modeling identified three structural descriptors that correlated with inhibition potency (r(2) = 0.85), providing a framework for developing in silico models to predict the AO inhibitory activity of a xenobiotic based solely on chemical structure. Finally, a simple static model was used to assess potential clinically relevant AO-mediated dietary substance-drug interactions. Epicatechin gallate and epigallocatechin gallate, prominent constituents in green tea, were predicted to have moderate to high risk. Further characterization of this uncharted type of interaction is warranted, including dynamic modeling and, potentially, clinical evaluation.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Aldeído Oxidase/metabolismo , Dieta/efeitos adversos , Interações Alimento-Droga/fisiologia , Catequina/efeitos adversos , Catequina/análogos & derivados , Catequina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Ligantes , Oxirredução , Relação Quantitativa Estrutura-Atividade , Chá/efeitos adversos , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...