Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Protoc ; 6(5)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888032

RESUMO

Drosophila melanogaster is an excellent model for dissecting innate immune signaling and functions. Humoral and cellular immune mechanisms in the fly take place in the hemolymph, where host defense components are secreted and act in response to microbial invaders. Studying hemolymph factors is critical for understanding the regulation of the host's antimicrobial immune system. Therefore, methods for extracting the fly hemolymph efficiently and in sufficient quantities are essential for isolating and characterizing immune proteins and peptides. Here, we describe a novel and simple hemolymph isolation protocol for single D. melanogaster male and female adults. This procedure substantially improves the already used technique and allows fly immunologists to explore innate immune hemolymph activity in D. melanogaster individuals.

2.
Sci Rep ; 12(1): 14237, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987963

RESUMO

Steinernema carpocapsae is an entomopathogenic nematode (EPN) that rapidly infects and kills a wide range of insect hosts and has been linked to host immunosuppression during the initial stages of infection. The lethal nature of S. carpocapsae infections has previously been credited to its symbiotic bacteria; however, it has become evident that the nematodes are able to effectively kill their hosts independently through their excretion/secretion products (ESPs). Here we examined how the adult Drosophila melanogaster immune system is modulated in response to S. carpocapsae ESPs in an attempt to ascertain individual pathogenic contributions of the isolated compound. We found that the S. carpocapsae ESPs decrease the survival of D. melanogaster adult flies, they induce the expression of certain antimicrobial peptide-encoding genes, and they cause significant reduction in phenoloxidase enzyme activity and delay in the melanization response in males flies. We also report that S. carpocapsae ESPs affect hemocyte numbers in both male and female individuals. Our results indicate the manipulative role of EPN ESPs and reveal sex-specific differences in the host response against nematode infection factors. These findings are beneficial as they promote our understanding of the molecular basis of nematode pathogenicity and the parasite components that influence nematode-host interactions.


Assuntos
Infecções por Nematoides , Rabditídios , Animais , Drosophila melanogaster/genética , Feminino , Interações Hospedeiro-Parasita , Imunidade , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...