Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 126(49): 21022-21033, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36561200

RESUMO

A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work.

2.
J Phys Chem C Nanomater Interfaces ; 126(29): 12074-12081, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35928240

RESUMO

Shell-isolated nanoparticles (SHINs) with a 37 nm gold core and an 11 nm tin dioxide (SnO2) coating exhibited long-life Raman enhancement for 3 months and a wide pH stability of pH 2-13 in comparison with conventional SiO2-coated SHINs. Herein, Au-SnO2 is demonstrated as a more durable SHIN for use in the technique Shell-Isolated Nanoparticles for Enhanced Raman Spectroscopy (SHINERS).

3.
Faraday Discuss ; 239(0): 250-262, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848780

RESUMO

Germanium selenide (GeSe) bulk crystals, thin films and solar cells are investigated with a focus on acceptor-doping with silver (Ag) and the use of an Sb2Se3 interfacial layer. The Ag-doping of GeSe occurred by a stoichiometric melt growth technique that created Ag-doped GeSe bulk crystals. A combination of capacitance voltage measurements, synchrotron radiation photoemission spectroscopy and surface space-charge calculations indicates that Ag-doping increases the hole density from 5.2 × 1015 cm-3 to 1.9 × 1016 cm-3. The melt-grown material is used as the source for thermally evaporated GeSe films within solar cells. The cell structure with the highest efficiency of 0.260% is FTO/CdS/Sb2Se3/undoped-GeSe/Au, compared with solar cells without the Sb2Se3 interfacial layer or with the Ag-doped GeSe.

4.
Adv Mater ; 34(37): e2204217, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35866491

RESUMO

Ga2 O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2 O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ-Ga2 O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure-electronic-structure relationship. Here, density functional theory is used in combination with a machine-learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ-phase. Theoretical results are compared with surface and bulk sensitive soft and hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ-Ga2 O3 . The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.

5.
Chem Mater ; 32(5): 1964-1973, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296264

RESUMO

Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO2 is an earth abundant, cheaper alternative to In2O3 as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In2O3. On the basis of the recent discovery of mobility and conductivity enhancements in In2O3 from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO2-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO2, as it is a resonant dopant which is readily incorporated into SnO2 with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO2 was shown to be 0.23m 0, compared to 0.29m 0 seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities.

6.
J Am Chem Soc ; 142(2): 847-856, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825213

RESUMO

Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity.

7.
Adv Mater ; 32(4): e1905200, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788886

RESUMO

Mixed ionic-electronic conductors (MIECs) that display high oxide ion conductivity (σo ) and electronic conductivity (σe ) constitute an important family of electrocatalysts for a variety of applications including fuel cells and oxygen separation membranes. Often MIECs exhibit sufficient σe but inadequate σo . It has been a long-standing challenge to develop MIECs with both high σo and stability under device operation conditions. For example, the well-known perovskite oxide Ba0.5 Sr0.5 Co0.8 Fe0.2 O3- δ (BSCF) exhibits exceptional σo and electrocatalytic activity. The reactivity of BSCF with CO2 , however, limits its use in practical applications. Here, the perovskite oxide Bi0.15 Sr0.85 Co0.8 Fe0.2 O3- δ (BiSCF) is shown to exhibit not only exceptional bulk transport properties, with a σo among the highest for known MIECs, but also high CO2 tolerance. When used as an oxygen separation membrane, BiSCF displays high oxygen permeability comparable to that of BSCF and much higher stability under CO2 . The combination of high oxide transport properties and CO2 tolerance in a single-phase MIEC gives BiSCF a significant advantage over existing MIECs for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...