Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
STAR Protoc ; 4(4): 102549, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756153

RESUMO

Here, we provide a protocol for the systematic screening of protein-protein interactions mediated by short linear motifs using the Protein Interaction Screen on a peptide Matrix (PrISMa) technique. We describe how to pull down interacting proteins in a parallelized manner and identify them by mass spectrometry. Finally, we describe a bioinformatic workflow necessary to identify highly probable interaction partners in the large-scale dataset. We describe the application of this method for the transient interactome of the claudin protein family. For complete details on the use and execution of this protocol, please refer to Suarez-Artiles et al.1.


Assuntos
Claudinas , Peptídeos , Humanos , Claudinas/genética , Claudinas/metabolismo , Espectrometria de Massas/métodos
2.
Genes (Basel) ; 12(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828352

RESUMO

Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.


Assuntos
Transtorno do Espectro Autista/patologia , Redes Reguladoras de Genes , Transdução de Sinais , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Mutação , Serina-Treonina Quinases TOR/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA