Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8499, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605076

RESUMO

In 2007, the Anaktuvuk River fire burned more than 1000 km2 of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2 area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.

2.
Microbiol Spectr ; 12(1): e0279623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078720

RESUMO

IMPORTANCE: This study delves into the previously unexplored territory of extracellular vesicle (EV) cargo and composition, specifically focusing on lipid composition changes in EVs following Salmonella infection. EVs play crucial roles in intercellular communication, carrying a variety of biomolecules. Investigating how these EV cargo lipids change post-infection with Salmonella is significant for understanding the molecular mechanisms underlying lipid trafficking during infection. Given the impact of lipid composition on EV function, this research uncovers distinct differences in the lipid profiles of EVs at different time points post-infection and between infected and uninfected macrophages. This study identified lipids that are differentially abundant in EVs produced by the host during infection, offering novel insights into the dynamics of lipid profiles in EVs during cellular processes and infections. This work advances our understanding of host-pathogen interactions, specifically lipid-mediated EV functions during infection.


Assuntos
Vesículas Extracelulares , Infecções por Salmonella , Humanos , Comunicação Celular , Macrófagos , Lipídeos
3.
Viruses ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140684

RESUMO

Norovirus infection is influenced by the presence of commensal bacteria, and both human and murine norovirus (MNV) bind to these bacteria. These virus-bacterial interactions, as well as MNV infection, promote the increased production of bacterial extracellular vesicles (bEVs). However, no correlation has been made between specific bacterial groups, their vesicles, and their impact on norovirus infection. The current study evaluated the impact of select bacterial compositions of murine microbiomes using antibiotic (ABX) cocktails on MNV infection and bEV production. The goal of this research was to determine if increases in bEVs following MNV infection in mice were associated with changes in specific bacterial populations. Bacterial taxa were found to be differentially abundant in both ABX-treated and untreated mice, with the greatest change in bacterial taxa seen in mice treated with a broad-spectrum ABX cocktail. Specifically, Lachnospiraeae were found to be differentially abundant between a variety of treatment factors, including MNV infection. Overall, these results demonstrate that MNV infection can alter the abundance of bacterial taxa within the microbiota, as well as their production of extracellular vesicles, and that the use of selective antibiotic treatments can allow the detection of viral impacts on the microbiome that might otherwise be masked.


Assuntos
Infecções por Caliciviridae , Microbiota , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894776

RESUMO

There are a variety of methods employed by laboratories for quantifying extracellular vesicles isolated from bacteria. As a result, the ability to compare results across published studies can lead to questions regarding the suitability of methods and buffers for accurately quantifying these vesicles. Within the literature, there are several common methods for vesicle quantification. These include lipid quantification using the lipophilic dye FM 4-64, protein quantification using microBCA, Qubit, and NanoOrange assays, or direct vesicle enumeration using nanoparticle tracking analysis. In addition, various diluents and lysis buffers are also used to resuspend and treat vesicles. In this study, we directly compared the quantification of a bacterial outer membrane vesicle using several commonly used methods. We also tested the impact of different buffers, buffer age, lysis method, and vesicle diluent on vesicle quantification. The results showed that buffer age had no significant effect on vesicle quantification, but the lysis method impacted the reliability of measurements using Qubit and NanoOrange. The microBCA assay displayed the least variability in protein concentration values and was the most consistent, regardless of the buffer or diluent used. MicroBCA also demonstrated the strongest correlation to the NTA-determined particle number across a range of vesicle concentrations. Overall, these results indicate that with appropriate diluent and buffer choice, microBCA vs. NTA standard curves could be generated and the microBCA assay used to estimate the particle number when NTA instrumentation is not readily available.


Assuntos
Vesículas Extracelulares , Reprodutibilidade dos Testes , Vesículas Extracelulares/metabolismo , Compostos Orgânicos/metabolismo , Bactérias Gram-Negativas
5.
J Transl Med ; 21(1): 650, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743503

RESUMO

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Humanos , Animais , Ratos , Suínos , Porco Miniatura , Degeneração Retiniana/terapia , Neurônios , Instituições de Assistência Ambulatorial
6.
Front Cell Dev Biol ; 11: 1252547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691820

RESUMO

Rare DRAM2 coding variants cause retinal dystrophy with early macular involvement via unknown mechanisms. We found that DRAM2 is ubiquitously expressed in the human eye and expression changes were observed in eyes with more common maculopathy such as Age-related Macular Degeneration (AMD). To gain insights into pathogenicity of DRAM2-related retinopathy, we used a combination of in vitro and in vivo models. We found that DRAM2 loss in human pluripotent stem cell (hPSC)-derived retinal organoids caused the presence of additional mesenchymal cells. Interestingly, Dram2 loss in mice also caused increased proliferation of cells from the choroid in vitro and exacerbated choroidal neovascular lesions in vivo. Furthermore, we observed that DRAM2 loss in human retinal pigment epithelial (RPE) cells resulted in increased susceptibility to stress-induced cell death in vitro and that Dram2 loss in mice caused age-related photoreceptor degeneration. This highlights the complexity of DRAM2 function, as its loss in choroidal cells provided a proliferative advantage, whereas its loss in post-mitotic cells, such as photoreceptor and RPE cells, increased degeneration susceptibility. Different models such as human pluripotent stem cell-derived systems and mice can be leveraged to study and model human retinal dystrophies; however, cell type and species-specific expression must be taken into account when selecting relevant systems.

7.
Infect Immun ; 91(5): e0043922, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37097158

RESUMO

Mammalian-cell-derived extracellular vesicles, such as exosomes, have been a key focal point for investigating host-pathogen interactions and are major facilitators in modulating both bacterial and viral infection. However, in recent years, increasing attention has been given to extracellular vesicles produced by bacteria and the role they play in regulating infection and disease. Extracellular vesicles produced by pathogenic bacteria employ a myriad of strategies to assist in bacterial virulence or divert antibacterial responses away from the parental bacterium to promote infection by and survival of the parental bacterium. Commensal bacteria also produce extracellular vesicles. These vesicles can play a variety of roles during infection, depending on the bacterium, but have been primarily shown to aid the host by stimulating innate immune responses to control infection by both bacteria and viruses. This article will review the activities of bacterial extracellular vesicles known to modulate infection by bacterial and viral pathogens.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Bactérias , Interações Hospedeiro-Patógeno , Imunidade Inata , Mamíferos
8.
Microbiol Spectr ; : e0469122, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943087

RESUMO

Outer membrane vesicles (OMVs) are a primary means of communication for Gram-negative bacteria. The specific role of vesicle components in cellular communication and how components are packaged are still under investigation, but a correlation exists between OMV biogenesis and content. The two primary mechanisms of OMV biogenesis are membrane blebbing and explosive cell lysis, and vesicle content is based on the biogenesis mechanism. Hypervesiculation, which can be induced by stress conditions, also influences OMV content. Norovirus interaction with Enterobacter cloacae induces stress responses leading to increased OMV production and changes in DNA content, protein content, and vesicle size. The presence of genomic DNA and cytoplasmic proteins in these OMVs suggests some of the vesicles are formed by explosive cell lysis, so reduction or loss of these components indicates a shift away from this mechanism of biogenesis. Based on this, further investigation into bacterial stability and OMV content was conducted. Results showed that norovirus induced a dramatic shift in OMV lipid content. Specifically, the increased accumulation of phospholipids is associated with increased blebbing, thereby supporting previous observations that noroviruses shift the mechanism of OMV biogenesis. Slight differences in OMV metabolite content were also observed. While norovirus induced changes in OMV content, it did not change the lipid content of the bacterial outer membrane or the metabolite content of the bacterial cell. Overall, these results indicate that norovirus induces significant changes to OMV lipid architecture and cargo, which may be linked to a change in the mechanism of vesicle biogenesis. IMPORTANCE Extracellular vesicles from commensal bacteria are recognized for their importance in modulating host immune responses, and vesicle content is related to their impact on the host. Therefore, understanding how vesicles are formed and how their content shifts in response to stress conditions is necessary for elucidating their downstream functions. Our recent work has demonstrated that interactions between noroviruses and Enterobacter cloacae induce bacterial stress responses leading to hypervesiculation. In this article, we characterize and compare the lipid and metabolomic cargo of E. cloacae vesicles generated in the presence and absence of norovirus and show that viral interactions induce significant changes in vesicle content. Furthermore, we probe how these changes and changes to the bacterial cell may be indicative of a shift in the mechanism of vesicle biogenesis. Importantly, we find that noroviruses induce significant changes in vesicle lipid architecture and cargo that may be responsible for the immunogenic activity of these vesicles.

9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835596

RESUMO

Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.


Assuntos
Drosophila melanogaster , Inositol Oxigenase , Animais , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Drosophila melanogaster/genética , Inositol/metabolismo , Glucose/metabolismo , Obesidade/metabolismo , RNA Mensageiro
10.
Genes (Basel) ; 13(12)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36553630

RESUMO

Pluripotent stem cells (PSCs) offer an exciting resource for probing human biology; however, gene-editing efficiency remains relatively low in many cell types, including stem cells. Gene-editing using the CRISPR-Cas9 system offers an attractive solution that improves upon previous gene-editing approaches; however, like other technologies, off-target mutagenesis remains a concern. High-fidelity Cas9 variants greatly reduce off-target mutagenesis and offer a solution to this problem. To evaluate their utility as part of a cell-based gene-editing platform, human PSC lines were generated with a high-fidelity (HF) tetracycline-inducible engineered Streptococcus pyogenes SpCas9 (HF-iCas9) integrated into the AAVS1 safe harbor locus. By engineering cells with controllable expression of Cas9, we eliminated the need to include a large Cas9-expressing plasmid during cell transfection. Delivery of genetic cargo was further optimized by packaging DNA targeting guide RNAs (gRNAs) and donor fragments into a single plasmid backbone. The potential of homology-directed repair (HDR) based gene knock-in at the CLYBL safe harbor site and endogenous SOX2 and SIX6 genes were demonstrated. Moreover, we used non-homologous end-joining (NHEJ) for gene knockout of disease-relevant alleles. These high-fidelity CRISPR tools and the resulting HF-iCas9 cell lines will facilitate the production of cell-type reporters and mutants across different genetic backgrounds.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Reparo do DNA por Junção de Extremidades , Mutagênese
11.
Cells ; 11(21)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359808

RESUMO

Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.


Assuntos
Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/metabolismo , Cromatina/metabolismo , Retina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética
12.
Front Immunol ; 13: 909949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990695

RESUMO

Human norovirus is the primary cause of non-bacterial gastroenteritis globally and is the second leading cause of diarrheal deaths in children in developing countries. However, effective therapeutics which prevent or clear norovirus infection are not yet available due to a lack of understanding regarding norovirus pathogenesis. Evidence shows that noroviruses can bind to the surface of commensal bacteria, and the presence of these bacteria alters both acute and persistent murine norovirus infection through the modulation of host immune responses. Interestingly, norovirus-bacterial interactions also affect the bacteria by inducing bacterial stress responses and increasing the production of bacterial extracellular vesicles. Given the established ability of these vesicles to easily cross the intestinal barriers, enter the lamina propria, and modulate host responses, we hypothesized that bacterial extracellular vesicles influence murine norovirus infection through modulation of the antiviral immune response. In this study, we show that murine norovirus can attach to purified bacterial vesicles, facilitating co-inoculation of target cells with both virus and vesicle. Furthermore, we have found that when murine noroviruses and vesicles are used to co-inoculate macrophages, viral infection is reduced compared to virus infection alone. Specifically, co-inoculation with bacterial vesicles results in higher production and release of pro-inflammatory cytokines in response to viral infection. Ultimately, given that murine norovirus infection increases bacterial vesicle production in vivo, these data indicate that bacterial vesicles may serve as a mechanism by which murine norovirus infection is ultimately controlled and limited to a short-term disease.


Assuntos
Infecções por Caliciviridae , Vesículas Extracelulares , Norovirus , Animais , Antivirais/uso terapêutico , Criança , Vesículas Extracelulares/metabolismo , Humanos , Imunidade , Camundongos
13.
Viruses ; 14(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893662

RESUMO

Norovirus is the leading cause of acute viral gastroenteritis. Both human and murine noroviruses attach to commensal bacteria belonging to the mammalian gut flora, and binding levels are influenced by nutrients present in bacterial media. However, it is not known which nutrients are responsible for altering viral binding or why binding is altered. Gene expression of commensal bacteria can be changed by the external environment as well as by interaction with pathogens. For example, growth phase and incubation conditions impact expression levels of specific bacterial genes in Escherichia coli. We have previously shown that binding by both human and murine noroviruses to the commensal bacterium Enterobacter cloacae induces genome-wide changes in gene expression with a large number of differentially expressed genes associated with the surface structure of the bacterial cell. The current study evaluated norovirus binding under nutrient-limited conditions and assessed the expression of a select panel of these genes that are significantly altered by norovirus binding under these conditions. The goal of this work was to determine how norovirus attachment to Enterobacter cloacae affected the expression of these genes under varying nutrient and growth phase conditions. We found that the presence of glucose in minimal media reduced murine norovirus binding to E. cloacae and viral binding in the presence of glucose reduced gene expression for surface structures previously associated with norovirus attachment. Changes in viral binding and gene expression occurred in a growth phase-dependent manner. Collectively, these data demonstrate that both the growth phase and nutrient availability alter viral interactions with commensal bacteria and the subsequent changes in gene expression. Ultimately, this work advances our understanding of norovirus-bacterium interactions and provides a foundation for elucidating the conditions and surface structures that regulate norovirus attachment to bacteria.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Animais , Enterobacter cloacae/genética , Expressão Gênica , Glucose/metabolismo , Humanos , Mamíferos , Camundongos , Norovirus/genética
14.
Pharmaceutics ; 14(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456659

RESUMO

Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal recessive RP (arRP). However, limited options are available for patients with autosomal dominant RP (adRP). In vivo gene editing may be a therapeutic option to treat adRP. We previously rescued vision in neonatal adRP rats by the selective ablation of the Rhodopsin S334ter transgene following electroporation of a CRISPR/Cas9 vector. However, the translational feasibility and long-term safety and efficacy of ablation therapy is unclear. To this end, we show that AAV delivery of a CRISPR/Cas9 construct disrupted the Rhodopsin P23H transgene in postnatal rats, which rescued long-term vision and retinal morphology.

15.
mBio ; 13(2): e0017522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404121

RESUMO

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Idoso , Humanos , Imunoglobulina D , Ativação Linfocitária , Norovirus/fisiologia
16.
J Clin Psychol ; 78(10): 1986-2001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35285016

RESUMO

Although routine outcome monitoring (ROM) has been demonstrated to improve therapy efficiency and effectiveness, categorizations of improvement or deterioration using ROM measures (typically global symptoms) may not always be consistent with the lived experience of the client. A recent line of investigation examines these discrepancies and recommends supplementing ROM with additional measures or narrative interviews. In this case study, we use qualitative analysis of a posttreatment interview to specifically examine the client's perspective of discordant outcome when ROM indicated that the client deteriorated during treatment and the client reported retrospective improvement. We find that the interview provides a unique and helpful narrative perspective that supplements ROM. Findings suggest it may be useful to supplement ROM with approaches that extend beyond global symptom measurement and that outcomes from aggregated patient-focused research may be more complex than anticipated.


Assuntos
Narração , Avaliação de Resultados em Cuidados de Saúde , Humanos , Estudos Retrospectivos , Resultado do Tratamento
17.
J Extracell Vesicles ; 11(1): e12172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981901

RESUMO

Intestinal commensal bacteria contribute to maintaining gut homeostasis. Disruptions to the commensal flora are linked to the development and persistence of disease. The importance of these organisms is further demonstrated by the widespread ability of enteric viruses to exploit commensal bacteria to enhance viral infection. These viruses interact directly with commensal bacteria, and while the impact of this interaction on viral infection is well described for several viruses, the impact on the commensal bacteria has yet to be explored. In this article, we demonstrate, for the first time, that enteric viruses alter the gene expression and phenotype of individual commensal bacteria. Human and murine norovirus interaction with bacteria resulted in genome-wide differential gene expression and marked changes in the surface architecture of the bacterial cells. Furthermore, the interaction of the virus with bacteria led to increased production of smaller outer membrane vesicles (OMVs). Enhanced production of smaller vesicles was also observed when noroviruses were incubated with other commensal bacteria, indicating a potentially broad impact of norovirus interaction. The vesicle production observed in the in vivo model followed a similar trend where an increased quantity of smaller bacterial vesicles was observed in stool collected from virus-infected mice compared to mock-infected mice. Furthermore, changes in vesicle size were linked to changes in protein content and abundance, indicating that viral binding induced a shift in the mechanism of the OMV biogenesis. Collectively, these data demonstrate that enteric viruses induce specific changes in bacterial gene expression, leading to changes in bacterial extracellular vesicle production that can potentially impact host responses to infection.


Assuntos
Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/metabolismo , Gastroenterite/microbiologia , Microbioma Gastrointestinal , Norovirus/fisiologia , Animais , Membrana Externa Bacteriana/ultraestrutura , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Gastroenterite/metabolismo , Gastroenterite/virologia , Humanos , Camundongos , Interações Microbianas
18.
Front Cell Dev Biol ; 9: 764725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869356

RESUMO

Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.

19.
J Food Prot ; 84(12): 2092-2098, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324675

RESUMO

ABSTRACT: Human norovirus (HuNoV) is the leading cause of foodborne illness outbreaks and the second most common cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CMs) against HuNoV GII.4 Sydney and its cultivable surrogate Tulane virus (TuV) in suspensions mimicking fecally contaminated water. CMs were prepared by cross-linking chitosan molecules with sodium sulfate, and the antiviral activity of CMs was assessed with an infectivity assay on TuV and by quantitative reverse transcription PCR on TuV and HuNoV. A 3% CM suspension in phosphate-buffered saline (pH 7.2) bound to TuV particles but had a negligible impact on virus infectivity (P > 0.05). A 10-min contact time resulted in a 1.5-log reduction in genomic copies per mL of TuV and HuNoV in fecal suspensions (P < 0.05). Despite the negligible impact on viral infectivity, CMs can moderately bind to infectious virus particles and help purify environmental water by removing these particles. In this study, TuV was a suitable surrogate for HuNoV with similar log reductions in fecal suspension. These findings highlight the potential application of CM as a novel treatment to minimize the spread of waterborne viral pathogens.


Assuntos
Quitosana , Doenças Transmitidas por Alimentos , Norovirus , Fezes , Humanos , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Appl Psychophysiol Biofeedback ; 46(2): 151-159, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527224

RESUMO

Common factors are nonspecific therapeutic elements common across different varieties of psychotherapy. In a recent study, 68 expert psychotherapy researchers with a variety of allegiances collectively rated biofeedback as being negatively associated with many common factors (Tschacher et al. in Clin Psychol Psychother 21(1):82-96, 2014), including the therapeutic alliance. However, it seems implausible that biofeedback could benefit so many people while being incompatible with the therapeutic alliance and other common factors. The present study investigated the experiences of biofeedback clients who participated in a brief heart rate variability biofeedback protocol in order to explore the potential roles of common factors in biofeedback. The results of this study offer preliminary evidence that many common factors-including therapeutic alliance, self-efficacy expectation, mastery experiences, provision of explanatory scheme, mindfulness, and even cognitive restructuring-may play a role in biofeedback outcomes. Future research on this topic should include mediation and moderation models investigating the role of specific common factors on outcome and process studies to help determine what clinician behaviors are most helpful. Deeper investigation of common factors in biofeedback may benefit future biofeedback research and practice and address the concerns of colleagues outside of the biofeedback community who believe that biofeedback is at odds with common factors.


Assuntos
Psicoterapeutas , Psicoterapia , Biorretroalimentação Psicológica , Humanos , Autoeficácia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...