Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405904

RESUMO

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

2.
iScience ; 26(7): 107095, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456850

RESUMO

Non-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically. IHC validation using primary sample tissue microarrays confirmed a pronounced positive association between CD8+ T cell tumor infiltration and the interferon-associated targets, CCL5 and MDA5. We next extended these findings to the assessment of clinical trial biopsies from patients with advanced non-small-cell lung cancer treated with epigenetic therapy with and without concurrent immunotherapy. These analyses revealed treatment-associated increases in both CD8+ T cell intratumoral infiltration and microenvironment CCL5 staining intensity.

3.
Nucleic Acids Res ; 51(12): 5997-6005, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37094063

RESUMO

CpG methylation generally occurs on both DNA strands and is essential for mammalian development and differentiation. Until recently, hemimethylation, in which only one strand is methylated, was considered to be simply a transitory state generated during DNA synthesis. The discovery that a subset of CCCTC-binding factor (CTCF) binding sites is heritably hemimethylated suggests that hemimethylation might have an unknown biological function. Here we show that the binding of CTCF is profoundly altered by which DNA strand is methylated and by the specific CTCF binding motif. CpG methylation on the motif strand can inhibit CTCF binding by up to 7-fold, whereas methylation on the opposite strand can stimulate binding by up to 4-fold. Thus, hemimethylation can alter binding by up to 28-fold in a strand-specific manner. The mechanism for sensing methylation on the opposite strand requires two critical residues, V454 and S364, within CTCF zinc fingers 7 and 4. Similar to methylation, CpG hydroxymethylation on the motif strand can inhibit CTCF binding by up to 4-fold. However, hydroxymethylation on the opposite strand removes the stimulatory effect. Strand-specific methylation states may therefore provide a mechanism to explain the transient and dynamic nature of CTCF-mediated chromatin interactions.


Assuntos
Fator de Ligação a CCCTC , Metilação de DNA , Proteínas Repressoras , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Cromatina , Ilhas de CpG , DNA/metabolismo , Mamíferos/genética , Proteínas Repressoras/metabolismo
4.
Clin Cancer Res ; 29(11): 2052-2065, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928921

RESUMO

PURPOSE: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy. PATIENTS AND METHODS: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible. Preplanned correlative analysis was performed to characterize peripheral immune dynamics and global DNA methylation, transcriptome, and immune infiltration dynamics of patient tumors. RESULTS: Safety run-in enrolled 6 patients and phase II enrolled 15 patients before the trial was closed for futility. No dose-limiting toxicity was observed. Four patients, with best response of stable disease (SD), exhibited extended tumor control (8-11 months) and survival (>14 months). Correlative analysis revealed lack of DNA demethylation in tumors after 2 cycles of treatment. Increased peripheral immune activation and immune infiltration in tumors after treatment correlated with progression-free survival and SD. Furthermore, high IL6 and IL8 levels in the patients' plasma was associated with short survival. CONCLUSIONS: No RECIST responses were observed after combination therapy in this trial. Although we could not detect the anticipated tumor-intrinsic effects of guadecitabine, the addition of hypomethylating agent to ICI therapy induced immune activation in a few patients, which associated with longer patient survival.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundário , Antígeno B7-H1 , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Recidiva Local de Neoplasia/tratamento farmacológico
5.
Cell Rep ; 42(1): 112016, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662621

RESUMO

Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Histonas/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/metabolismo , Cromatina , RNA
6.
Cancer Lett ; 548: 215899, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087682

RESUMO

The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , DNA , Decitabina/farmacologia , Decitabina/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nucleossomos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
7.
Cell Genom ; 2(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35873672

RESUMO

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

8.
Commun Biol ; 5(1): 528, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654826

RESUMO

The DNA methylation status of the X-chromosome in cancer cells is often overlooked because of computational difficulties. Most of the CpG islands on the X-chromosome are mono-allelically methylated in normal female cells and only present as a single copy in male cells. We treated two colorectal cancer cell lines from a male (HCT116) and a female (RKO) with increasing doses of a DNA methyltransferase 1 (DNMT1)-specific inhibitor (GSK3685032/GSK5032) over several months to remove as much non-essential CpG methylation as possible. Profiling of the remaining DNA methylome revealed an unexpected, enriched retention of DNA methylation on the X-chromosome. Strikingly, the identified retained X-chromosome DNA methylation patterns accurately predicted de novo DNA hypermethylation in colon cancer patient methylomes in the TCGA COAD/READ cohort. These results suggest that a re-examination of tumors for X-linked DNA methylation changes may enable greater understanding of the importance of epigenetic silencing of cancer related genes.


Assuntos
Metilação de DNA , Neoplasias , Ilhas de CpG , DNA , Feminino , Humanos , Masculino , Neoplasias/genética , Cromossomo X
9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723081

RESUMO

Genomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, nc886 (also called VTRNA2-1) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The nc886 gene is part of an ∼1.6-kb differentially methylated region (DMR) that is methylated in the oocyte and silenced on the maternal allele in about 75% of humans worldwide. Here, we show that the presence or absence of imprinting at the nc886 DMR in an individual is consistent across different tissues, confirming that the imprint is established before cellular differentiation and is maintained into adulthood. We investigated the relationships between the frequency of imprinting in newborns and maternal age, alcohol consumption and cigarette smoking before conception in more than 1,100 mother/child pairs from South Africa. The probability of imprinting in newborns was increased in older mothers and decreased in mothers who drank alcohol before conception. On the other hand, cigarette smoking had no apparent relationship with the frequency of imprinting. These data show an epigenetic change during oocyte maturation which is potentially subject to environmental influence. Much focus has been placed on avoiding alcohol consumption during pregnancy, but our data suggest that drinking before conception may affect the epigenome of the newborn.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Metilação de DNA , Epigênese Genética , Impressão Genômica , Exposição Materna/efeitos adversos , Oócitos/metabolismo , RNA não Traduzido/genética , Alelos , Ilhas de CpG , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Idade Materna , Gravidez
10.
Nature ; 586(7827): 151-155, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968275

RESUMO

CpG methylation by de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes, yet cannot methylate the DNA wrapped around the nucleosome core2, and they favour the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-electron microscopy structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3 and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds to the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.


Assuntos
Microscopia Crioeletrônica , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Nucleossomos/metabolismo , Animais , Biocatálise , Montagem e Desmontagem da Cromatina , DNA/química , DNA/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/química , Ligação Proteica , Domínios Proteicos , Xenopus/genética , DNA Metiltransferase 3B
11.
Proc Natl Acad Sci U S A ; 117(32): 19359-19366, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719115

RESUMO

Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.


Assuntos
Metilação de DNA , Eucariotos/genética , Genoma , Ilhas de CpG , Citosina/metabolismo , Elementos de DNA Transponíveis , Eucariotos/metabolismo , Regulação da Expressão Gênica , Tamanho do Genoma , Mutação , Regiões Promotoras Genéticas
12.
Cancer Res ; 80(12): 2441-2450, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32245794

RESUMO

The DNA methyltransferase inhibitors (DNMTi) 5-azacytidine and 5-aza-2-deoxycytidine have been approved for the treatment of different types of hematologic malignancies. However, only about 50% of patients respond to treatment. Therefore, a more comprehensive understanding of the molecular changes in patients treated with DNMTi is needed. Here, we examined gene expression profiles in a total of 150 RNA samples from two adult cohorts and one pediatric cohort with hematologic cancers taken before, during, and after treatment with 5-azacytidine (40 patients; 15 nonresponders, 25 responders). Using each patient as their own control, malignant cells showed preferential activation of a subset of evolutionarily young transposable elements (TE), including endogenous retroviral long terminal repeats (LTR), short and long interspersed nuclear elements (SINE and LINE), and the type I IFN pathway in responders, all independent of disease classification. Transfection of eight upregulated LTRs into recipient human cells in culture showed robust and heterogenous activation of six genes in the type I IFN pathway. These results, obtained in diverse hematologic disease entities, show that common targets (TE) activated by the same drug (5-azacytidine) elicit an immune response, which may be important for patient's responses to DNMTi. SIGNIFICANCE: Activation of specific classes of evolutionarily young transposable elements can lead to activation of the innate immune system.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Elementos de DNA Transponíveis/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Imunidade Inata/genética , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Estudos de Coortes , Elementos de DNA Transponíveis/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Retrovirus Endógenos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Mimetismo Molecular/imunologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/efeitos dos fármacos
13.
Clin Epigenetics ; 11(1): 143, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623675

RESUMO

BACKGROUND: Patients with haematological malignancies are often vitamin C deficient, and vitamin C is essential for the TET-induced conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), the first step in active DNA demethylation. Here, we investigate whether oral vitamin C supplementation can correct vitamin C deficiency and affect the 5hmC/5mC ratio in patients with myeloid cancers treated with DNA methyltransferase inhibitors (DNMTis). RESULTS: We conducted a randomized, double-blinded, placebo-controlled pilot trial (NCT02877277) in Danish patients with myeloid cancers performed during 3 cycles of DNMTi-treatment (5-azacytidine, 100 mg/m2/d for 5 days in 28-day cycles) supplemented by oral dose of 500 mg vitamin C (n = 10) or placebo (n = 10) daily during the last 2 cycles. Fourteen patients (70%) were deficient in plasma vitamin C (< 23 µM) and four of the remaining six patients were taking vitamin supplements at inclusion. Global DNA methylation was significantly higher in patients with severe vitamin C deficiency (< 11.4 µM; 4.997 vs 4.656% 5mC relative to deoxyguanosine, 95% CI [0.126, 0.556], P = 0.004). Oral supplementation restored plasma vitamin C levels to the normal range in all patients in the vitamin C arm (mean increase 34.85 ± 7.94 µM, P = 0.0004). We show for the first time that global 5hmC/5mC levels were significantly increased in mononuclear myeloid cells from patients receiving oral vitamin C compared to placebo (0.037% vs - 0.029%, 95% CI [- 0.129, - 0.003], P = 0.041). CONCLUSIONS: Normalization of plasma vitamin C by oral supplementation leads to an increase in the 5hmC/5mC ratio compared to placebo-treated patients and may enhance the biological effects of DNMTis. The clinical efficacy of oral vitamin C supplementation to DNMTis should be investigated in a large randomized, placebo-controlled clinical trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02877277 . Registered on 9 August 2016, retrospectively registered.


Assuntos
Ácido Ascórbico/administração & dosagem , Azacitidina/administração & dosagem , Metilação de DNA/efeitos dos fármacos , Leucemia Mieloide/terapia , Síndromes Mielodisplásicas/terapia , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Ácido Ascórbico/sangue , Ácido Ascórbico/farmacologia , Azacitidina/farmacologia , Ilhas de CpG/efeitos dos fármacos , Dinamarca , Método Duplo-Cego , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide/sangue , Leucemia Mieloide/genética , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/genética , Projetos Piloto
14.
Nat Rev Cancer ; 19(3): 151-161, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30723290

RESUMO

DNA methylation inhibitors have become the mainstay for treatment of certain haematological malignancies. In addition to their abilities to reactivate genes, including tumour suppressors, that have acquired DNA methylation during carcinogenesis, they induce the expression of thousands of transposable elements including endogenous retroviruses and latent cancer testis antigens normally silenced by DNA methylation in most somatic cells. This results in a state of viral mimicry in which treated cells mount an innate immune response by turning on viral defence genes and potentially expressing neoantigens. Furthermore, these changes mediated by DNA methylation inhibitors can also alter the function of immune cells relevant to acquired immunity. Additionally, other inhibitors of epigenetic processes, such as histone deacetylases, methylases and demethylases, can elicit similar effects either individually or in combinations with DNA methylation inhibitors. These findings together with rapid development of immunotherapies open new avenues for cancer treatment.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Animais , Epigenômica/métodos , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia/métodos , Oncologia/métodos
15.
Proc Natl Acad Sci U S A ; 115(51): E11970-E11977, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509985

RESUMO

Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is "tunable" in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.


Assuntos
Metilação de DNA , Epigenômica , Impressão Genômica , Polimorfismo Genético , Alelos , Sítios de Ligação , Fator de Ligação a CCCTC , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Haplótipos , Humanos , Idade Materna , MicroRNAs/genética , Mães , Gravidez , RNA não Traduzido/genética
16.
Cancer Res ; 78(20): 5754-5766, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185548

RESUMO

Ovarian cancer ranks as the most deadly gynecologic cancer, and there is an urgent need to develop more effective therapies. Previous studies have shown that G9A, a histone methyltransferase that catalyzes mono- and dimethylation of histone H3 lysine9, is highly expressed in ovarian cancer tumors, and its overexpression is associated with poor prognosis. Here we report that pharmacologic inhibition of G9A in ovarian cancer cell lines with high levels of G9A expression induces synergistic antitumor effects when combined with the DNA methylation inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-CdR). These antitumor effects included upregulation of endogenous retroviruses (ERV), activation of the viral defense response, and induction of cell death, which have been termed "viral mimicry" effects induced by DNMTi. G9Ai treatment further reduced H3K9me2 levels within the long terminal repeat regions of ERV, resulting in further increases of ERV expression and enhancing "viral mimicry" effects. In contrast, G9Ai and 5-aza-CdR were not synergistic in cell lines with low basal G9A levels. Taken together, our results suggest that the synergistic effects of combination treatment with DNMTi and G9Ai may serve as a novel therapeutic strategy for patients with ovarian cancer with high levels of G9A expression.Significance: Dual inhibition of DNA methylation and histone H3 lysine 9 dimethylation by 5-aza-CdR and G9Ai results in synergistic upregulation of ERV and induces an antiviral response, serving as a basis for exploring this novel combination treatment in patients with ovarian cancer. Cancer Res; 78(20); 5754-66. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neoplasias Ovarianas/metabolismo , Azacitidina/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Retrovirus Endógenos/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/virologia , Prognóstico , Análise de Sequência de RNA , Ativação Transcricional/efeitos dos fármacos
17.
Genome Res ; 28(8): 1147-1157, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29970451

RESUMO

We provide a comprehensive genomic and epigenomic map of the more than 500,000 endogenous retroviruses (ERVs) and fragments that populate the intergenic regions of the human genome. The repressive epigenetic marks associated with the ERVs, particularly long terminal repeats (LTRs), show a remarkable switch in silencing mechanisms, depending on the evolutionary age of the LTRs. Young LTRs tend to be CpG rich and are mainly suppressed by DNA methylation, whereas intermediate age LTRs are associated predominantly with histone modifications, particularly histone H3 lysine 9 (H3K9) methylation. Young LTRs can be reactivated by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) alone, but their level of expression is much increased by 5-aza-CdR treatment plus knockdown of one of several H3K9 methyltransferases or of the H3K27 methyltransferase EZH2. The removal of cytosine methylation led to rapid, widespread increases in H3K9me3 in the LTRs. Intermediate age LTRs had lower CpG densities and were not up-regulated by 5-aza-CdR treatment, but they were sensitive to knockdown of H3K9 methyltransferases. Unlike the situation in embryonic stem cells, the polycomb repressive complex (PRC2) has a minor role in LTR suppression by itself and is only a player after removal of cytosine methylation in the analyzed cancer cell line. Up-regulation of LTRs and induction of "viral mimicry" is rapidly becoming of interest for predicting cancer patient response to epigenetic therapies. Understanding the mechanism for LTR suppression is of major importance in order to improve patient treatment strategies.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Retrovirus Endógenos/genética , Sequências Repetidas Terminais/genética , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional
18.
Methods Mol Biol ; 1708: 267-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29224149

RESUMO

Various methodologies are available to interrogate specific components of epigenetic mechanisms such as DNA methylation or nucleosome occupancy at both the locus-specific and the genome-wide level. It has become increasingly clear, however, that comprehension of the functional interactions between epigenetic mechanisms is critical for understanding how cellular transcription programs are regulated or deregulated during normal and disease development. The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) assay allows us to directly measure the relationship between DNA methylation and nucleosome occupancy by taking advantage of the methyltransferase M.CviPI, which methylates unprotected GpC dinucleotides to create a footprint of chromatin accessibility. This assay generates dual nucleosome occupancy and DNA methylation information at a single-DNA molecule resolution using as little as 200,000 cells and in as short as 15 min reaction time. DNA methylation levels and nucleosome occupancy status of genomic regions of interest can be subsequently interrogated by cloning PCR-amplified bisulfite DNA and sequencing individual clones. Alternatively, NOMe-seq can be combined with next-generation sequencing in order to generate an integrated global map of DNA methylation and nucleosome occupancy, which allows for comprehensive examination as to how these epigenetic components correlate with each other.


Assuntos
Metilação de DNA , Nucleossomos/metabolismo , Análise de Sequência de DNA/métodos , Ilhas de CpG , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metiltransferases/metabolismo , Regiões Promotoras Genéticas
19.
Semin Cancer Biol ; 51: 59-67, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29102482

RESUMO

Over the past few years it has become clear that vitamin C, as a provider of reduced iron, is an essential factor for the function of epigenetic regulators that initiate the demethylation of DNA and histones. Vitamin C deficiency is rare in the general population, but is frequently observed in patients with cancer. Genes encoding epigenetic regulators are often mutated in cancer, underscoring their central roles in carcinogenesis. In hematological cancers, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), drugs that reverse epigenetic aberrations are now the standard of care. Recent in vitro studies suggest that vitamin C at physiological concentrations, combined with hypomethylating agents may act synergistically to cause DNA demethylation through active and passive mechanisms, respectively. Additionally, several recent studies have renewed interest in the use of pharmacological doses of vitamin C injected intravenously to selectively kill tumor cells. This review will focus on the potential of vitamin C to optimize the outcome of epigenetic therapy in cancer patients and alternatively to act as a therapeutic at high doses.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
20.
Oncotarget ; 8(58): 98322-98335, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228692

RESUMO

Epithelial to mesenchymal transition (EMT) is a key trans-differentiation process, which plays a critical role in physiology and pathology. Although gene expression changes in EMT have been scrutinized, study of epigenome is in its infancy. To understand epigenetic changes during TWIST-driven EMT, we used the AcceSssIble assay to study DNA methylation and chromatin accessibility in human mammary epithelial cells (HMECs). The DNA methylation changes were found to have functional significance in EMT - i.e. methylated genes were enriched for E-box motifs that can be recognized by TWIST, at the promoters suggesting a potential targeting phenomenon, whereas the demethylated regions were enriched for pro-metastatic genes, supporting the role of EMT in metastasis. TWIST-induced EMT triggers alterations in chromatin accessibility both independent of and dependent on DNA methylation changes, primarily resulting in closed chromatin conformation. By overlapping the genes, whose chromatin structure is changed during early EMT and a known "core EMT signature", we identified 18 driver candidate genes during EMT, 14 upregulated and 4 downregulated genes with corresponding chromatin structure changes. Among 18 genes, we focused on TRIM29 as a novel marker of EMT. Although loss of TRIM29 is insufficient to suppress CDH, it is enough to induce CDH2 and VIM. Gene functional annotation analysis shows the involvement of TRIM29 in epidermal development, cell differentiation and cell migration. Taken together, our results provide a robust snapshot of chromatin state during human EMT and identify TRIM29 as a core mediator of EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...