Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Lab Chip ; 24(6): 1750-1761, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38348692

RESUMO

Three-dimensional in vitro models in microfluidic systems are promising tools for studying cell biology, with complex models using multiple cell types combined with high resolution imaging. Neuronal models demand electrical readout of the activity of networks of single neurons, yet classical planar microelectrode arrays struggle to capture extracellular action potentials when neural soma are suspended distant from the microelectrodes. This study introduces sophisticated microfluidic microelectrode arrays, specifically tailored for electrophysiology of 3D neuronal cultures. Using multilayer photolithography of permanent epoxy photoresists, we developed devices having 12 independent culture modules in a convenient format. Each module has two adjacent compartments for hydrogel-based 3D cell culture, with tunnels allowing projection of neurites between compartments. Microelectrodes integrated in the tunnels record action potentials as they pass between the compartments. Mesh ceilings separate the compartments from overlying wells, allowing for simple cell seeding and later nutrient, gas and waste exchange and application of test substances. Using these devices, we have demonstrated 3D neuronal culture, including electrophysiological recording and live imaging. This microphysiological platform will enable high-throughput investigation of neuronal networks for investigation of neurological disorders, neural pharmacology and basic neuroscience. Further models could include cocultures representing multiple brain regions or innervation models of other organs.


Assuntos
Sistemas Microfisiológicos , Neurônios , Potenciais de Ação/fisiologia , Técnicas de Cocultura , Técnicas de Cultura de Células em Três Dimensões , Microeletrodos
2.
Biomed Microdevices ; 25(3): 35, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646842

RESUMO

Microelectrode arrays (MEAs) have proven to be a powerful tool to study electrophysiological processes over the last decades with most technology developed for investigation of the heart or brain. Other targets in the field of bioelectronic medicine are the peripheral nervous system and its innervation of various organs. Beyond the heart and nervous systems, the beta cells of the pancreatic islets of Langerhans generate action potentials during the production of insulin. In vitro experiments have demonstrated that their activity is a biomarker for blood glucose levels, suggesting that recording their activity in vivo could support patients suffering from diabetes mellitus with long-term automated read-out of blood glucose concentrations. Here, we present a flexible polymer-based implant having 64 low impedance microelectrodes designed to be implanted to a depth of 10 mm into the pancreas. As a first step, the implant will be used in acute experiments in pigs to explore the electrophysiological processes of the pancreas in vivo. Beyond use in the pancreas, our flexible implant and simple implantation method may also be used in other organs such as the brain.


Assuntos
Glicemia , Ilhotas Pancreáticas , Animais , Suínos , Insulina , Encéfalo , Eletrofisiologia
4.
Biosens Bioelectron ; 228: 115223, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931193

RESUMO

Organoids are emerging in vitro models of human physiology. Neural models require the evaluation of functional activity of single cells and networks, which is commonly measured by microelectrode arrays. The characteristics of organoids clash with existing in vitro or in vivo microelectrode arrays. With inspiration from implantable mesh electronics and growth of organoids on polymer scaffolds, we fabricated suspended hammock-like mesh microelectrode arrays for neural organoids. We have demonstrated the growth of organoids enveloping these meshes and the culture of organoids on meshes for up to one year. Furthermore, we present proof-of-principle recordings of spontaneous electrical activity across the volume of an organoid. Our concept enables a new class of microelectrode arrays for in vitro models of three-dimensional electrically active tissue.


Assuntos
Técnicas Biossensoriais , Telas Cirúrgicas , Humanos , Microeletrodos , Organoides , Eletrofisiologia/métodos
5.
BMC Med Educ ; 23(1): 92, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747169

RESUMO

BACKGROUND: The COVID-19 pandemic changed the way we work, spend, live, and learn. The impact was felt in the health sector where hospitals cancelled elective surgery, put on hold outpatient services, and implemented new social distancing procedures and telehealth systems, to enable hospitals to increase bed capacity. For medical students, these factors meant significant disruption to their clinical placements, remote delivery of their education, cessation of international and interstate placements, complicated by significant travel restrictions and border closures. There were concerns that final year students might be unable to graduate that year due to this lack of clinical exposure. INNOVATION: As a result of this disruption in late March 2020 we developed an innovative 6 week 'COVID-19 e-lective' rotation, consisting of online modules, virtual clinical tutorials and a COVID project totalling the equivalent of 200 h of work. RESULTS: An evaluation was undertaken that found it to be remarkably successful in meeting the students' learning needs and alleviating concerns about disrupted placements. It was also conducted during 2021 for all Year 4 students to help expand clinical placement opportunities. OUTCOMES: This paper describes the e-lective, its innovations, its challenges, and its evaluation findings, for others to learn from.


Assuntos
COVID-19 , Educação de Graduação em Medicina , Preceptoria , Estudantes de Medicina , Telemedicina , Humanos , Pandemias , Educação de Graduação em Medicina/métodos
6.
Microsyst Nanoeng ; 8: 131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568135

RESUMO

Recording neural signals from delicate autonomic nerves is a challenging task that requires the development of a low-invasive neural interface with highly selective, micrometer-sized electrodes. This paper reports on the development of a three-dimensional (3D) protruding thin-film microelectrode array (MEA), which is intended to be used for recording low-amplitude neural signals from pelvic nervous structures by penetrating the nerves transversely to reduce the distance to the axons. Cylindrical gold pillars (Ø 20 or 50 µm, ~60 µm height) were fabricated on a micromachined polyimide substrate in an electroplating process. Their sidewalls were insulated with parylene C, and their tips were optionally modified by wet etching and/or the application of a titanium nitride (TiN) coating. The microelectrodes modified by these combined techniques exhibited low impedances (~7 kΩ at 1 kHz for Ø 50 µm microelectrode with the exposed surface area of ~5000 µm²) and low intrinsic noise levels. Their functionalities were evaluated in an ex vivo pilot study with mouse retinae, in which spontaneous neuronal spikes were recorded with amplitudes of up to 66 µV. This novel process strategy for fabricating flexible, 3D neural interfaces with low-impedance microelectrodes has the potential to selectively record neural signals from not only delicate structures such as retinal cells but also autonomic nerves with improved signal quality to study neural circuits and develop stimulation strategies in bioelectronic medicine, e.g., for the control of vital digestive functions.

7.
Circ Res ; 131(12): 1004-1017, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321446

RESUMO

BACKGROUND: Genome-wide association studies have discovered a link between genetic variants on human chromosome 15q26.1 and increased coronary artery disease (CAD) susceptibility; however, the underlying pathobiological mechanism is unclear. This genetic locus contains the FES (FES proto-oncogene, tyrosine kinase) gene encoding a cytoplasmic protein-tyrosine kinase involved in the regulation of cell behavior. We investigated the effect of the 15q26.1 variants on FES expression and whether FES plays a role in atherosclerosis. METHODS AND RESULTS: Analyses of isogenic monocytic cell lines generated by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that monocytes with an engineered 15q26.1 CAD risk genotype had reduced FES expression. Small-interfering-RNA-mediated knockdown of FES promoted migration of monocytes and vascular smooth muscle cells. A phosphoproteomics analysis showed that FES knockdown altered phosphorylation of a number of proteins known to regulate cell migration. Single-cell RNA-sequencing revealed that in human atherosclerotic plaques, cells that expressed FES were predominately monocytes/macrophages, although several other cell types including smooth muscle cells also expressed FES. There was an association between the 15q26.1 CAD risk genotype and greater numbers of monocytes/macrophage in human atherosclerotic plaques. An animal model study demonstrated that Fes knockout increased atherosclerotic plaque size and within-plaque content of monocytes/macrophages and smooth muscle cells, in apolipoprotein E-deficient mice fed a high fat diet. CONCLUSIONS: We provide substantial evidence that the CAD risk variants at the 15q26.1 locus reduce FES expression in monocytes and that FES depletion results in larger atherosclerotic plaques with more monocytes/macrophages and smooth muscle cells. This study is the first demonstration that FES plays a protective role against atherosclerosis and suggests that enhancing FES activity could be a potentially novel therapeutic approach for CAD intervention.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-fes , Animais , Humanos , Camundongos , Artérias/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo
8.
ACS Omega ; 7(14): 11829-11838, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449925

RESUMO

Optical chemical imaging has established itself as a valuable technique for visualizing analyte distributions in 2D, notably in medical, biological, and environmental applications. In particular for image acquisitions on small scales between few millimeter to the micrometer range, as well as in heterogeneous samples with steep analyte gradients, image resolution is essential. When individual pixels are inspected, however, image noise becomes a metric as relevant as image accuracy and precision, and denoising filters are applied to preserve relevant information. While denoising filters smooth the image noise, they can also lead to a loss of spatial resolution and thus to a loss of relevant information about analyte distributions. To investigate the trade-off between image resolution and noise reduction for information preservation, we studied the impact of random camera noise and noise due to incorrect camera settings on oxygen optodes using the ratiometric imaging technique. First, we estimated the noise amplification across the calibration process using a Monte Carlo simulation for nonlinear fit models. We demonstrated how initially marginal random camera noise results in a significant standard deviation (SD) for oxygen concentration of up to 2.73% air under anoxic conditions, although the measurement was conducted under ideal conditions and over 270 thousand sample pixels were considered during calibration. Second, we studied the effect of the Gaussian denoising filter on a steep oxygen gradient and investigated the impact when the smoothing filter is applied during data processing. Finally, we demonstrated the effectiveness of a Savitzky-Golay filter compared to the well-established Gaussian filter.

9.
Heart ; 108(14): 1114-1120, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35288444

RESUMO

INTRODUCTION: Bicuspid aortic valve (BAV) affects 1% of the general population. NOTCH1 was the first gene associated with BAV. The proportion of familial and sporadic BAV disease attributed to NOTCH1 mutations has not been estimated. AIM: The aim of our study was to provide an estimate of familial and sporadic BAV disease attributable to NOTCH1 mutations. METHODS: The population of our study consisted of participants of the University of Leicester Bicuspid aoRtic vAlVe gEnetic research-8 pedigrees with multiple affected family members and 381 sporadic patients. All subjects underwent NOTCH1 sequencing. A systematic literature search was performed in the NCBI PubMed database to identify publications reporting NOTCH1 sequencing in context of congenital heart disease. RESULTS: NOTCH1 sequencing in 36 subjects from 8 pedigrees identified one variant c.873C>G/p.Tyr291* meeting the American College of Medical Genetics and Genomics criteria for pathogenicity. No pathogenic or likely pathogenic NOTCH1 variants were identified in 381 sporadic patients. Literature review identified 64 relevant publication reporting NOTCH1 sequencing in 528 pedigrees and 9449 sporadic subjects. After excluding families with syndromic disease pathogenic and likely pathogenic NOTCH1 variants were detected in 9/435 (2.1%; 95% CI: 0.7% to 3.4%) of pedigrees and between 0.05% (95% CI: 0.005% to 0.10%) and 0.08% (95% CI: 0.02% to 0.13%) of sporadic patients. Incomplete penetrance of definitely pathogenic NOTCH1 mutations was observed in almost half of reported pedigrees. CONCLUSIONS: Pathogenic and likely pathogenic NOTCH1 genetic variants explain 2% of familial and <0.1% of sporadic BAV disease and are more likely to associate with tetralogy of Fallot and hypoplastic left heart.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Valva Aórtica/anormalidades , Doenças das Valvas Cardíacas/epidemiologia , Doenças das Valvas Cardíacas/genética , Humanos , Mutação , Linhagem , Receptor Notch1/genética
10.
Biofabrication ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942606

RESUMO

Three-dimensional cell technologies as pre-clinical models are emerging tools for mimicking the structural and functional complexity of the nervous system. The accurate exploration of phenotypes in engineered 3D neuronal cultures, however, demands morphological, molecular and especially functional measurements. Particularly crucial is measurement of electrical activity of individual neurons with millisecond resolution. Current techniques rely on customized electrophysiological recording set-ups, characterized by limited throughput and poor integration with other readout modalities. Here we describe a novel approach, using multiwell glass microfluidic microelectrode arrays, allowing non-invasive electrical recording from engineered 3D neuronal cultures. We demonstrate parallelized studies with reference compounds, calcium imaging and optogenetic stimulation. Additionally, we show how microplate compatibility allows automated handling and high-content analysis of human induced pluripotent stem cell-derived neurons. This microphysiological platform opens up new avenues for high-throughput studies on the functional, morphological and molecular details of neurological diseases and their potential treatment by therapeutic compounds.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neuritos , Fenômenos Eletrofisiológicos , Humanos , Microeletrodos , Neurônios
11.
Acta Biomater ; 140: 364-378, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839029

RESUMO

Calcified aortic valve disease (CAVD) is the most prevalent valve disease in the elderly. Targeted pharmacological therapies are limited since the underlying mechanisms of CAVD are not well understood. Appropriate 3D in vitro models could potentially improve our knowledge of the disease. Here, we developed a 3D in vitro aortic heart valve model that resembles the morphology of the valvular extracellular matrix and mimics the mechanical and physiological behavior of the native aortic valve fibrosa and spongiosa. We employed cryogenic electrospinning to engineer a bi-layered cryogenic electrospun scaffold (BCES) with defined morphologies that allowed valvular endothelial cell (VEC) adherence and valvular interstitial cell (VIC) ingrowth into the scaffold. Using a self-designed cell culture insert allowed us to establish the valvular co-culture simultaneously by seeding VICs on one side and VECs on the other side of the electrospun scaffold. Proof-of-principle calcification studies were successfully performed using an established osteogenic culture protocol and the here designed 3D in vitro aortic heart valve model. STATEMENT OF SIGNIFICANCE: Three-dimensional (3D) electrospun scaffolds are widely used for soft tissue engineering since they mimic the morphology of the native extracellular matrix. Several studies have shown that cells behave more naturally on 3D materials than on the commonly used stiff two-dimensional (2D) cell culture substrates, which have no biological properties. As appropriate 3D models for the study of aortic valve diseases are limited, we developed a novel bi-layered 3D in vitro test system by using the versatile technique of cryogenic electrospinning in combination with the influence of different solvents to mimic the morphology, mechanical, and cellular distribution of a native aortic heart valve leaflet. This 3D in vitro model can be used to study valve biology and heart valve-impacting diseases such as calcification to elucidate therapeutic targets.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Idoso , Células Cultivadas , Técnicas de Cocultura , Humanos , Poliésteres
12.
Ochsner J ; 21(1): 76-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828428

RESUMO

Background: Malaria remains endemic in Solomon Islands, but data on malaria in the provinces of Solomon Islands are limited. This study from Makira-Ulawa Province aimed to identify the most prevalent strain of malaria and assess if the available rapid diagnostic test (RDT) was effective in Kirakira Hospital. Methods: Forty-five patients who presented to Kirakira Hospital with symptoms of fever had a positive malaria parasite smear during a 4-week period in 2017. The parasite count for each smear was calculated. Simultaneous testing using the CareStart Malaria HRP2/pLDH (Pf/pan) Combo RDT was conducted. The data for all malaria parasite smears performed in Makira-Ulawa Province in 2016 were collated for comparison. Results: All 45 patients diagnosed with malaria in a 4-week period in 2017 were positive for Plasmodium vivax. The median parasite load was 280 parasites per µL (range, 160 to 640 parasites per µL). None of the 45 CareStart RDTs performed was positive. In 2016, 5,505 of 17,195 patients (32.0%) screened had malaria parasites detected on a malaria parasite smear. P vivax was detected in 5,212 (94.7%) and Plasmodium falciparum in 285 (5.2%) of patients with malaria. Conclusion: P vivax is the predominant strain of malaria present in Makira-Ulawa Province. RDTs were not helpful in the diagnosis of malaria at Kirakira Hospital. The parasite load detected in the 45 patients diagnosed with malaria in this study was low. A focus on attempting to eradicate P vivax in the community through improved compliance with treatment protocols is suggested as a possible way forward to best manage malaria in Makira-Ulawa Province.

13.
IEEE Trans Biomed Eng ; 68(10): 3131-3141, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755552

RESUMO

OBJECTIVE: Changes in ultrasound backscatter energy (CBE) imaging can monitor thermal therapy. Catheter-based ultrasound (CBUS) can treat deep tumors with precise spatial control of energy deposition and ablation zones, of which CBE estimation can be limited by low contrast and robustness due to small or inconsistent changes in ultrasound data. This study develops a multi-spatiotemporal compounding CBE (MST-CBE) imaging approach for monitoring specific to CBUS thermal therapy. METHODS: Ex vivo thermal ablations were performed with stereotactic positioning of a 180° directional CBUS applicator, temperature monitoring probes, endorectal US probe, and subsequent lesion sectioning and measurement. Five frames of raw radiofrequency data were acquired throughout in 15s intervals. Using window-by-window estimation methods, absolute and positive components of MST-CBE images at each point were obtained by the compounding ratio of squared envelope data within an increasing spatial size in each short-time window. RESULTS: Compared with conventional US, Nakagami, and CBE imaging, the detection contrast and robustness quantified by tissue-modification-ratio improved by 37.2 ± 4.7 (p < 0.001), 37.5 ± 5.2 (p < 0.001), and 6.4 ± 4.0 dB (p < 0.05) in the MST-CBE imaging, respectively. Correlation coefficient and bias between cross-sectional dimensions of the ablation zones measured in tissue sections and estimated from MST-CBE were up to 0.91 (p < 0.001) and -0.02 mm2, respectively. CONCLUSION: The MST-CBE approach can monitor the detailed changes within target tissues and effectively characterize the dimensions of the ablation zone during CBUS energy deposition. SIGNIFICANCE: The MST-CBE approach could be practical for improved accuracy and contrast of monitoring and evaluation for CBUS thermal therapy.


Assuntos
Terapia por Ultrassom , Ultrassom , Catéteres , Estudos Transversais , Diagnóstico por Imagem , Humanos , Fígado/diagnóstico por imagem , Ultrassonografia
14.
Ultrasound Med Biol ; 47(1): 131-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092899

RESUMO

High-intensity ultrasound (US) ablation produces deeper myocardial lesions than radiofrequency ablation. The presence of intravascular microbubble (MB) contrast agents enhances pulsed-wave US ablation via cavitation-related histotripsy, potentially facilitating ablation in persistently perfused/conducting myocardium. US ablation catheters were developed and tested in the presence of MBs using ex vivo and in vivo models. High-frame-rate videomicroscopy and US imaging of gel phantom models confirmed MB destruction by inertial cavitation. MB-facilitated US ablation in an ex vivo perfused myocardium model generated shallow (2 mm) lesions and, in an in vivo murine hindlimb model, reduced perfusion by 42% with perivascular hemorrhage and inflammation, but no myonecrosis.


Assuntos
Ablação por Cateter/efeitos adversos , Fibrose/etiologia , Microbolhas/efeitos adversos , Microvasos/lesões , Terapia por Ultrassom/efeitos adversos , Animais , Ablação por Cateter/métodos , Camundongos , Imagens de Fantasmas , Terapia por Ultrassom/métodos
15.
J Neural Eng ; 17(5): 052001, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055360

RESUMO

OBJECTIVE: While the positive correlation between impedance and noise of microelectrodes is well known, their quantitative relationship is too rarely described. Knowledge of this relationship provides useful information for both microsystems engineers and electrophysiologists. APPROACH: We discuss the physical basis of noise in recordings with microelectrodes, and compare measurements of impedance spectra to noise of microelectrodes. MAIN RESULTS: Microelectrode recordings intrinsically include thermal noise, [Formula: see text], with the real component of impedance integrated over the recording frequency band. Impedance spectroscopy allows the quantitative prediction of thermal noise. Optimization of microelectrode noise should also consider the contribution of amplifier noise. These measures enable a quantitative evaluation of microelectrodes' recording quality which is more informative than common but limited comparisons based on the impedance magnitude at 1 kHz. SIGNIFICANCE: Improved understanding of the origin of microelectrode noise will support efforts to produce smaller yet low noise microelectrodes, capable of recording from higher numbers of neurons. This tutorial is relevant for single microelectrodes, tetrodes, neural probes and microelectrode arrays, whether used in vitro or in vivo.


Assuntos
Neurônios , Impedância Elétrica , Eletrodos Implantados , Desenho de Equipamento , Microeletrodos
16.
Lab Chip ; 20(16): 2911-2926, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662810

RESUMO

HepaChip microplate (HepaChip-MP) is a microfluidic platform comprised of 24 independent culture chambers with continuous, unidirectional perfusion. In the HepaChip-MP, an automated dielectrophoresis process selectively assembles viable cells into elongated micro tissues. Freshly isolated primary human hepatocytes (PHH) and primary human liver endothelial cells (HuLEC) were successfully assembled as cocultures aiming to mimic the liver sinusoid. Minimal quantities of primary human cells are required to establish micro tissues in the HepaChip-MP. Metabolic function including induction of CYP enzymes in PHH was successfully measured demonstrating a high degree of metabolic activity of cells in HepaChip-MP cultures and sufficient sensitivity of LC-MS analysis even for the relatively small number of cells per chamber. Further, parallelization realized in HepaChip-MP enabled the acquisition of dose-response toxicity data of diclofenac with a single device. Several unique technical features should enable a widespread application of this in vitro model. We have demonstrated fully automated preparation of cell cultures in HepaChip-MP using a pipetting robot. The tubeless unidirectional perfusion system based on gravity-driven flow can be operated within a standard incubator system. Overall, the system readily integrates in workflows common in cell culture labs. Further research will be directed towards optimization of media composition to further extend culture lifetime and study oxygen gradients and their effect on zonation within the sinusoid-like microorgans. In summary, we have established a novel parallelized and scalable microfluidic in vitro liver model showing hepatocyte function and anticipate future in-depth studies of liver biology and applications in pre-clinical drug development.


Assuntos
Células Endoteliais , Fígado , Técnicas de Cultura de Células , Técnicas de Cocultura , Hepatócitos , Humanos
17.
Mol Genet Genomic Med ; 8(10): e1437, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32720365

RESUMO

BACKGROUND: Bicuspid aortic valve is the most common congenital valvular heart defect in the general population. BAV is associated with significant morbidity due to valve failure, formation of thoracic aortic aneurysm, and increased risk of infective endocarditis and aortic dissection. Loss of function mutations in NOTCH1 (OMIM 190198) has previously been associated with congenital heart disease involving the aortic valve, left ventricle outflow tract, and mitral valve that segregates in affected pedigrees as an autosomal dominant trait with variable expressivity. METHODS: We performed whole-exome sequencing in four members of a three-generational family (three affected and one unaffected subject) with clinical phenotypes including aortic valve stenosis, thoracic aortic aneurysm, and ventricular septal defect. RESULTS: We identified 16 potentially damaging genetic variants (one stop variant, one splice variant, and 14 missense variants) cosegregating with the phenotype. Of these variants, the nonsense mutation (p.Tyr291*) in NOTCH1 was the most deleterious variant identified and the most likely variant causing the disease. CONCLUSION: Inactivating NOTCH1 mutations are a rare cause of familial heart disease involving predominantly left ventricular outflow tract lesions and characterized by the heterogeneity of clinical phenotype.


Assuntos
Aneurisma da Aorta Torácica/genética , Estenose da Valva Aórtica/genética , Doença da Válvula Aórtica Bicúspide/genética , Comunicação Interventricular/genética , Mutação com Perda de Função , Receptor Notch1/genética , Adulto , Idoso , Aneurisma da Aorta Torácica/patologia , Estenose da Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide/patologia , Códon sem Sentido , Feminino , Comunicação Interventricular/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
18.
Front Neurosci ; 14: 405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508562

RESUMO

The technology for producing microelectrode arrays (MEAs) has been developing since the 1970s and extracellular electrophysiological recordings have become well established in neuroscience, drug screening and cardiology. MEAs allow monitoring of long-term spiking activity of large ensembles of excitable cells noninvasively with high temporal resolution and mapping its spatial features. However, their inability to register subthreshold potentials, such as intrinsic membrane oscillations and synaptic potentials, has inspired a number of laboratories to search for alternatives to bypass the restrictions and/or increase the sensitivity of microelectrodes. In this study, we present the fabrication and in vitro experimental validation of arrays of PEDOT:PSS-coated 3D ultramicroelectrodes, with the best-reported combination of small size and low electrochemical impedance. We observed that this type of microelectrode does not alter neuronal network biological properties, improves the signal quality of extracellular recordings and exhibits higher selectivity toward single unit recordings. With fabrication processes simpler than those reported in the literature for similar electrodes, our technology is a promising tool for study of neuronal networks.

19.
Am J Hum Genet ; 106(3): 389-404, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109421

RESUMO

Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.


Assuntos
Estudo de Associação Genômica Ampla , Leucócitos/ultraestrutura , Nucleotídeos/metabolismo , Telômero , Humanos
20.
Biomed Phys Eng Express ; 6(3): 035033, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33438678

RESUMO

Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 µs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.


Assuntos
Disco Intervertebral/diagnóstico por imagem , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Acústica , Alginatos , Animais , Proteína Morfogenética Óssea 7/metabolismo , Bovinos , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Técnicas In Vitro , Disco Intervertebral/metabolismo , Transdução de Sinais/fisiologia , Temperatura , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...