Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(6): e17289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327124

RESUMO

The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown-headed cowbird nestlings (BHCO; Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW; Protonotaria citrea) that were either parasitized or non-parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter-specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.


Assuntos
Parasitos , Passeriformes , Animais , RNA Ribossômico 16S/genética , Comportamento de Nidação
2.
Glob Chang Biol ; 29(23): 6635-6646, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728032

RESUMO

Urbanization now exposes large portions of the earth to sources of anthropogenic disturbance, driving rapid environmental change and producing novel environments. Changes in selective pressures as a result of urbanization are often associated with phenotypic divergence; however, the generality of phenotypic change remains unclear. In this study, we examined whether morphological phenotypes in two residential species (Carolina Wren [Thryothorus ludovicianus] and Northern Cardinal [Cardinalis cardinalis]) and two migratory species (Painted Bunting [Passerina ciris], and White-eyed Vireo [Vireo griseus]), differed between urban core and edge habitats in San Antonio, Texas, USA. More specifically, we examined whether urbanization, associated sensory pollution (light and noise) and brightness (open, bright areas cause by anthropogenic land use) influenced measures of avian body (mass and frame size) and lateral eye size. We found no differences in body size between urban core and edge habitats for all species except the Painted Bunting, in which core-urban individuals were smaller. Rather than a direct effect of urbanization, this was due to differences in age structure between habitats, with urban-core areas consisting of higher proportions of younger buntings which are, on average, smaller than older birds. Residential birds inhabiting urban-core areas had smaller eyes compared to their urban-edge counterparts, resulting from a negative association between eye size and light pollution and brightness across study sites; notably, we found no such association in the two migratory species. Our findings demonstrate how urbanization may indirectly influence phenotypes by altering population demographics and highlight the importance of accounting for age when assessing factors driving phenotypic change. We also provide some of the first evidence that birds may adapt to urban environments through changes in their eye morphology, demonstrating the need for future research into relationships among eye size, ambient light microenvironment use, and disassembly of avian communities as a result of urbanization.


Assuntos
Aves Canoras , Humanos , Animais , Urbanização , Poluição Luminosa , Ecossistema , Ruído
3.
Ecology ; 104(3): e3925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36423935

RESUMO

Nest-sharer avian brood parasites do not evict or otherwise kill host chicks, but instead inflict a range of negative effects on their nestmates that are mediated by interactions between the parasite and host life history traits. Although many of the negative fitness effects of avian brood parasitism are well documented across diverse host species, there remains a paucity of studies that have examined the impacts of parasitism across the entirety of host ontogeny (i.e., from when an egg is laid until independence). More specifically, few studies have examined the impact of brood parasitism on the pre- and post-fledging development, physiology, behavior, and survival of host offspring. To help fill this knowledge gap, we assessed the effects of brood parasitism by Brown-headed Cowbirds (Molothrus ater) across the ontogeny (incubation, nestling, and post-fledging period) of nine sympatrically breeding host species in central Illinois, USA; due to sample sizes, impacts on the post-fledging period were only examined in two of the nine species. Specifically, we examined the impact of brood parasitism on ontogenetic markers including the embryonic heart rate, hatching rate, nestling period length, nest survival, and offspring growth and development. Additionally, in species in which we found negative impacts of cowbird parasitism on host nestmate ontogeny, we examined whether the difference in adult size between parasites and their hosts and their hatching asynchrony positively predicted variation in host costs across these focal taxa. We found that costs of cowbird parasitism were most severe during early nesting stages (reduction in the host clutch or brood size) and were predicted negatively by host size and positively by incubation length. In contrast, we only found limited costs of cowbird parasitism on other stages of host ontogeny; critically, post-fledging survival did not differ between host offspring that fledged alongside cowbirds and those that did not. Our findings (i) highlight the direct costs of cowbird parasitism on host fitness, (ii) provide evidence for when (the stage) those costs are manifested, and (iii) may help to explain why many anti-cowbird defenses of hosts have evolved for protection from parasitism during the laying and incubation stages.


Assuntos
Parasitos , Passeriformes , Animais , Passeriformes/fisiologia , Crescimento e Desenvolvimento , Comportamento de Nidação/fisiologia
4.
Oecologia ; 198(4): 981-993, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435481

RESUMO

The antagonistic arms races between obligate brood parasites and their hosts provide critical insights into coevolutionary processes and constraints on the evolution of life history strategies. In avian brood parasites-a model system for examining host-parasite dynamics-research has primarily focused on the egg and nestling stage, while far less is known about the behavior and ecology of fledgling and juvenile brood parasites. To provide greater insights into the post-fledging period of generalist brood parasites, we used handheld and automated telemetry systems to examine the behavior and survival of fledgling brown-headed cowbirds (Molothrus ater). Our host community-wide analysis (data on cowbirds fledged from different host species were pooled) shows that fledgling cowbirds' follow patterns of movement and survival found across the post-fledging literature on parental passerine species. Cowbird fledgling survival was lowest during the first 3 days post-fledging, whereas daily rates of survival neared 100% after about 16 days post-fledging. Cowbird daytime post-fledging activity rates, perch heights, and distance from the natal area all increased with fledging age and young generally gained independence from host parents at 3-4 weeks post-fledging, with approximately the same latency as has been observed in studies on fledglings of cowbird host species. Our research demonstrates how automated telemetry systems can overcome past methodological limitations in post-fledging research and provides an important foundation for future studies examining adaptations that cowbirds and other brood parasites use to exploit hosts during the post-fledging period.


Assuntos
Parasitos , Passeriformes , Animais , Modelos Biológicos , Comportamento de Nidação
5.
Ecol Evol ; 11(22): 15695-15707, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824783

RESUMO

Life history studies have established that trade-offs between growth and survival are common both within and among species. Identifying the factor(s) that mediate this trade-off has proven difficult, however, especially at the among-species level. In this study, we examined a series of potentially interrelated traits in a community of temperate-zone passerine birds to help understand the putative causes and consequences of variation in early-life growth among species. First, we examined whether nest predation risk (a proven driver of interspecific variation in growth and development rates) was correlated with species-level patterns of incubation duration and nestling period length. We then assessed whether proxies for growth rate covaried with mean trait covariance strength (i.e., phenotypic correlations ( rp), which can be a marker of early-life stress) among body mass, tarsus length, and wing length at fledging. Finally, we examined whether trait covariance strength at fledging was related to postfledging survival. We found that higher nest predation risk was correlated with faster skeletal growth and that our proxies for growth corresponded with increased trait covariance strength ( rp), which subsequently, correlated with higher mortality in the next life stage (postfledging period). These results provide an indication that extrinsic pressures (nest predation) impact rates of growth, and that there are costs of rapid growth across species, expressed as higher mean rp and elevated postfledging mortality. The link between higher levels of trait covariance at fledging and increased mortality is unclear, but increased trait covariance strength may reflect reduced phenotypic flexibility (i.e., phenotypic canalization), which may limit an organism's capacity for coping with environmental or ecological variability.

6.
Proc Natl Acad Sci U S A ; 117(48): 30539-30546, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199602

RESUMO

Parent-offspring conflict has explained a variety of ecological phenomena across animal taxa, but its role in mediating when songbirds fledge remains controversial. Specifically, ecologists have long debated the influence of songbird parents on the age of fledging: Do parents manipulate offspring into fledging to optimize their own fitness or do offspring choose when to leave? To provide greater insight into parent-offspring conflict over fledging age in songbirds, we compared nesting and postfledging survival rates across 18 species from eight studies in the continental United States. For 12 species (67%), we found that fledging transitions offspring from comparatively safe nesting environments to more dangerous postfledging ones, resulting in a postfledging bottleneck. This raises an important question: as past research shows that offspring would benefit-improve postfledging survival-by staying in the nest longer: Why then do they fledge so early? Our findings suggest that parents manipulate offspring into fledging early for their own benefit, but at the cost of survival for each individual offspring, reflecting parent-offspring conflict. Early fledging incurred, on average, a 13.6% postfledging survival cost for each individual offspring, but parents benefitted through a 14.0% increase in the likelihood of raising at least one offspring to independence. These parental benefits were uneven across species-driven by an interaction between nest mortality risk and brood size-and predicted the age of fledging among species. Collectively, our results suggest that parent-offspring conflict and associated parental benefits explain variation in fledging age among songbird species and why postfledging bottlenecks occur.


Assuntos
Comportamento Animal , Aves Canoras , Animais , Comportamento de Nidação
7.
J Anim Ecol ; 89(10): 2235-2245, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32596836

RESUMO

Evolutionary ecologists have long been interested in the adaptive significance of morphological traits across stages of animal life. In some cases, traits that are not adaptive in one life stage may be adaptive in a subsequent stage. As such, morphological traits may generate important carryover effects, whereby conditions experienced during one life-history stage influence fitness during subsequent stages. Carryover effects are particularly relevant in young animals, as early life stages are thought to be critical with respect to animal life-history evolution and population dynamics. In songbirds, pre- to post-fledging carryover effects operating within species may be critical for survival and shape life histories among species, but remain poorly understood. Among potential songbird traits, wing development and its associated flight ability may be the most important for post-fledging survival. Thus, to assess the adaptive significance of wing development for juvenile songbirds under Arnold's (Integrative and Comparative Biology, 23, 1983, 347) classic performance-morphology-fitness paradigm, we tested for pre- to post-fledging carryover effects among 20 coexisting species (nine focal species) of an avian community in east-central Illinois, USA. We found evidence for pre- to post-fledging carryover effects of wing development in all species, by which individuals with less developed wings exhibited poorer flight ability and experienced higher rates of mortality after fledging. Furthermore, our findings suggest that carryover effects operating at the species level ultimately help shape patterns of life-history variation among species. Specifically, we found that species with higher rates of nest predation had shorter nestling periods, fledged young with less developed wings and exhibited higher rates of post-fledging mortality. Our results highlight the adaptive significance of wing development as a key factor generating pre- to post-fledging carryover effects among songbirds, and demonstrate how morphological traits, locomotor performance, and age-specific survival may trade-off and interact across juvenile life stages to shape animal life histories.


Assuntos
Aves Canoras , Animais , Illinois , Dinâmica Populacional , Comportamento Predatório , Asas de Animais
8.
J Parasitol ; 105(2): 232-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30908117

RESUMO

Haemosporidian parasites are widespread in birds and are commonly used to evaluate ecological, evolutionary, and behavioral consequences of pathogen infection. While haemosporidian parasites may be important agents of selection, information on the incidence and outcomes of infection in many wild birds remains incomplete and warrants further inquiry. We examined the prevalence and costs of haemosporidian parasites in a wild population of dickcissels ( Spiza americana; n = 170) breeding in central Illinois. Over 2 breeding seasons, prevalence of haemosporidian parasites was 41% and was similar between sexes and years. Within each sex, there was no association between proxies of fitness (body condition and number of fledglings produced) and infection status. While we found no evidence that haemosporidian parasites have a direct, negative impact on dickcissels, we discuss how extra-pair paternity and changes across the life cycle of dickcissels and haemosporidian parasites may have masked or prevented detection of negative effects in our study. Ultimately our findings contribute to a growing literature providing improved clarity on how and when parasite infections can negatively impact wild host organisms and can aid in guiding future work examining such associations.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/fisiologia , Passeriformes/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Feminino , Illinois/epidemiologia , Masculino
9.
Ecology ; 92(9): 1781-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939074

RESUMO

Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations.


Assuntos
Evolução Biológica , Ecossistema , Lonicera/fisiologia , Passeriformes/fisiologia , Animais , Plumas/fisiologia , Feminino , Humanos , Masculino , Pigmentos Biológicos , Reprodução , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...