Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 11(7): 860-4, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26194319

RESUMO

In the growing landscape of biomedical public-private-partnerships, particularly for Alzheimer's disease, the question is posed as to their value. What impacts do public-private-partnerships have on clinical and basic science research in Alzheimer's disease? The authors answer the question using the Alzheimer's Disease Neuroimaging Initiative (ADNI) as a test case and example. ADNI is an exemplar of how public-private-partnerships can make an impact not only on clinical and basic science research and practice (including clinical trials), but also of how similar partnerships using ADNI as an example, can be designed to create a maximal impact within their fields.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Pesquisa Biomédica , Ensaios Clínicos como Assunto , Neuroimagem/métodos , Parcerias Público-Privadas , Humanos
2.
PLoS One ; 8(4): e61829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613947

RESUMO

BACKGROUND: Autism and Agenesis of the Corpus Callosum (AgCC) are interrelated behavioral and anatomic phenotypes whose genetic etiologies are incompletely understood. We used the BTBR T⁺ tf/J (BTBR) strain, exhibiting fully penetrant AgCC, a diminished hippocampal commissure, and abnormal behaviors that may have face validity to autism, to study the genetic basis of these disorders. METHODS: We generated 410 progeny from an F2 intercross between the BTBR and C57BL/6J strains. The progeny were phenotyped for social behaviors (as juveniles and adults) and commisural morphology, and genotyped using 458 markers. Quantitative trait loci (QTL) were identified using genome scans; significant loci were fine-mapped, and the BTBR genome was sequenced and analyzed to identify candidate genes. RESULTS: Six QTL meeting genome-wide significance for three autism-relevant behaviors in BTBR were identified on chromosomes 1, 3, 9, 10, 12, and X. Four novel QTL for commissural morphology on chromosomes 4, 6, and 12 were also identified. We identified a highly significant QTL (LOD score = 20.2) for callosal morphology on the distal end of chromosome 4. CONCLUSIONS: We identified several QTL and candidate genes for both autism-relevant traits and commissural morphology in the BTBR mouse. Twenty-nine candidate genes were associated with synaptic activity, axon guidance, and neural development. This is consistent with a role for these processes in modulating white matter tract development and aspects of autism-relevant behaviors in the BTBR mouse. Our findings reveal candidate genes in a mouse model that will inform future human and preclinical studies of autism and AgCC.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Cérebro/patologia , Locos de Características Quantitativas , Comportamento Social , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Animais , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Fenótipo
3.
Mol Cell Neurosci ; 50(3-4): 283-92, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22728723

RESUMO

MicroRNAs (miRNAs) are critical regulators of nervous system function, and in vivo knockout studies have demonstrated that miRNAs are necessary for multiple aspects of neuronal development and survival. However, the role of miRNA biogenesis in the formation and function of synapses in the cerebral cortex is only minimally understood. Here, we have generated and characterized a mouse line with a conditional neuronal deletion of Dgcr8, a miRNA biogenesis protein predicted to process miRNAs exclusively. Loss of Dgcr8 in pyramidal neurons of the cortex results in a non-cell-autonomous reduction in parvalbumin interneurons in the prefrontal cortex, accompanied by a severe deficit in inhibitory synaptic transmission and a corresponding reduction of inhibitory synapses. Together, these results suggest a vital role for miRNAs in governing essential aspects of inhibitory transmission and interneuron development in the mammalian nervous system. These results may be relevant to human diseases such as schizophrenia, where both altered Dgcr8 levels as well as aberrant inhibitory transmission in the prefrontal cortex have been postulated to contribute to the pathophysiology of the disease.


Assuntos
Potenciais Pós-Sinápticos Inibidores/genética , MicroRNAs/metabolismo , Córtex Pré-Frontal/fisiologia , Proteínas/genética , Células Piramidais/fisiologia , Animais , Encéfalo/anormalidades , Tamanho Celular , Deleção de Genes , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Pilocarpina/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Proteínas/metabolismo , Células Piramidais/metabolismo , Proteínas de Ligação a RNA , Convulsões/induzido quimicamente
4.
J Neurochem ; 102(6): 1895-1904, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17504265

RESUMO

GABA synthesis is necessary to maintain synaptic vesicle filling, and key proteins in its biosynthetic pathways may play a role in regulating inhibitory synaptic stability and strength. GABAergic neurons require a source of precursor glutamate, possibly from glutamine, although it is controversial whether glutamine contributes to the synaptic pool of GABA. Here we report that inhibition of System A glutamine transporters with alpha-(methyl-amino) isobutyric acid rapidly reduced the amplitude of inhibitory post-synaptic currents and miniature inhibitory post-synaptic currents (mIPSCs) recorded in rat hippocampal area cornu ammonis 1 (CA1) pyramidal neurons, indicating that synaptic vesicle content of GABA was reduced. After inhibiting astrocytic glutamine synthesis by either blocking glutamate transporters or the glutamine synthetic enzyme, the effect of alpha-(methyl-amino) isobutyric acid on mIPSC amplitudes was abolished. Exogenous glutamine did not affect mIPSC amplitudes, suggesting that the neuronal transporters are normally saturated. Our findings demonstrate that a constitutive supply of glutamine is provided by astrocytes to inhibitory neurons to maintain vesicle filling. Therefore, glutamine transporters, like those for glutamate, are potential regulators of inhibitory synaptic strength. However, in contrast to glutamate, extracellular glutamine levels are normally high. Therefore, we propose a supportive role for glutamine, even under resting conditions, to maintain GABA vesicle filling.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/biossíntese , Sistema A de Transporte de Aminoácidos/antagonistas & inibidores , Ácidos Aminoisobutíricos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
5.
J Neurosci ; 26(28): 7380-9, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16837585

RESUMO

Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.


Assuntos
Encéfalo/fisiologia , Eminência Mediana/citologia , Neurônios/citologia , Transplante de Células-Tronco , Potenciais de Ação , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Diferenciação Celular , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Embrião de Mamíferos/citologia , Proteínas de Fluorescência Verde/biossíntese , Técnicas In Vitro , Interneurônios/fisiologia , Cinética , Camundongos , Camundongos Transgênicos , Inibição Neural , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia
6.
J Neurosci ; 25(35): 8056-65, 2005 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16135763

RESUMO

Benzodiazepine enhancement of GABA(A) receptor current requires a gamma subunit, and replacement of the gamma subunit by the delta subunit abolishes benzodiazepine enhancement. Although it has been demonstrated that benzodiazepines bind to GABA(A) receptors at the junction between alpha and gamma subunits, the structural basis for the coupling of benzodiazepine binding to allosteric enhancement of the GABA(A) receptor current is unclear. To determine the structural basis for this coupling, the present study used a chimera strategy, using gamma2L-delta GABA(A) receptor subunit chimeras coexpressed with alpha1 and beta3 subunits in human embryonic kidney 293T cells. Different domains of the gamma2L subunit were replaced by delta subunit sequence, and diazepam sensitivity was determined. Chimeric subunits revealed two areas of interest: domain 1 in transmembrane domain 1 (M1) and domain 2 in the C-terminal portion of transmembrane domain 2 (M2) and the M2-M3 extracellular loop. In those domains, site-directed mutagenesis demonstrated that the following two groups of residues were involved in benzodiazepine transduction of current enhancement: residues Y235, F236, T237 in M1; and S280, T281, I282 in M2 as well as the entire M2-M3 loop. These results suggest that a pocket of residues may transduce benzodiazepine binding to increased gating. Benzodiazepine transduction involves a group of residues that connects the N terminus and M1, and another group of residues that may facilitate an interaction between the N terminus and the M2 and M2-M3 loop domains.


Assuntos
Benzodiazepinas/farmacologia , Receptores de GABA-A/química , Receptores de GABA-A/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sequência de Aminoácidos/fisiologia , Animais , Agonistas de Receptores de GABA-A , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Ratos
7.
Curr Opin Pharmacol ; 3(1): 12-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12550736

RESUMO

GABA(A) (gamma-n-aminobutyric acid) receptor dysfunction has long been implicated in the development of epilepsy and status epilepticus. Recent advances have been made in understanding the cellular, pharmacological and genetic involvement of GABA(A) receptors in seizure disorders. In particular, genetic mutations found in GABA(A) receptor subunits strongly implicate the GABA(A) receptor in idiopathic generalised epilepsies.


Assuntos
Anticonvulsivantes/uso terapêutico , Receptores de GABA-A/metabolismo , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Humanos , Receptores de GABA-A/química , Estado Epiléptico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...