Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 14(9): 804-10, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23867627

RESUMO

Short-chain peptides are transported across membranes through promiscuous proton-dependent oligopeptide transporters (POTs)--a subfamily of the major facilitator superfamily (MFS). The human POTs, PEPT1 and PEPT2, are also involved in the absorption of various drugs in the gut as well as transport to target cells. Here, we present a structure of an oligomeric POT transporter from Shewanella oneidensis (PepTSo2), which was crystallized in the inward open conformation in complex with the peptidomimetic alafosfalin. All ligand-binding residues are highly conserved and the structural insights presented here are therefore likely to also apply to human POTs.


Assuntos
Proteínas de Bactérias/química , Shewanella/química , Simportadores/química , Alanina/análogos & derivados , Alanina/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Shewanella/metabolismo , Simportadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(45): 18459-64, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091000

RESUMO

Despite the importance of Mg(2+) for numerous cellular activities, the mechanisms underlying its import and homeostasis are poorly understood. The CorA family is ubiquitous and is primarily responsible for Mg(2+) transport. However, the key questions-such as, the ion selectivity, the transport pathway, and the gating mechanism-have remained unanswered for this protein family. We present a 3.2 Å resolution structure of the archaeal CorA from Methanocaldococcus jannaschii, which is a unique complete structure of a CorA protein and reveals the organization of the selectivity filter, which is composed of the signature motif of this family. The structure reveals that polar residues facing the channel coordinate a partially hydrated Mg(2+) during the transport. Based on these findings, we propose a unique gating mechanism involving a helical turn upon the binding of Mg(2+) to the regulatory intracellular binding sites, and thus converting a polar ion passage into a narrow hydrophobic pore. Because the amino acids involved in the uptake, transport, and gating are all conserved within the entire CorA family, we believe this mechanism is general for the whole family including the eukaryotic homologs.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ativação do Canal Iônico , Magnésio/metabolismo , Methanococcales/metabolismo , Sítios de Ligação , Transporte Biológico , Transporte de Íons , Íons , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...