Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res Neuroimaging ; 252: 26-35, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27179313

RESUMO

The purpose of this study is to assess the reproducibility of hippocampal atrophy rate measurements of commonly used fully-automated algorithms in Alzheimer disease (AD). The reproducibility of hippocampal atrophy rate for FSL/FIRST, AdaBoost, FreeSurfer, MAPS independently and MAPS combined with the boundary shift integral (MAPS-HBSI) were calculated. Back-to-back (BTB) 3D T1-weighted MPRAGE MRI from the Alzheimer's Disease Neuroimaging Initiative (ADNI1) study at baseline and year one were used. Analysis on 3 groups of subjects was performed - 562 subjects at 1.5T, a 75 subject group that also had manual segmentation and 111 subjects at 3T. A simple and novel statistical test based on the binomial distribution was used that handled outlying data points robustly. Median hippocampal atrophy rates were -1.1%/year for healthy controls, -3.0%/year for mildly cognitively impaired and -5.1%/year for AD subjects. The best reproducibility was observed for MAPS-HBSI (1.3%), while the other methods tested had reproducibilities at least 50% higher at 1.5T and 3T which was statistically significant. For a clinical trial, MAPS-HBSI should require less than half the subjects of the other methods tested. All methods had good accuracy versus manual segmentation. The MAPS-HBSI method has substantially better reproducibility than the other methods considered.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Algoritmos , Doença de Alzheimer/patologia , Atrofia/diagnóstico por imagem , Atrofia/patologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
2.
Neuroimage ; 92: 169-81, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24521851

RESUMO

BACKGROUND: To measure hippocampal volume change in Alzheimer's disease (AD) or mild cognitive impairment (MCI), expert manual delineation is often used because of its supposed accuracy. It has been suggested that expert outlining yields poorer reproducibility as compared to automated methods, but this has not been investigated. AIM: To determine the reproducibilities of expert manual outlining and two common automated methods for measuring hippocampal atrophy rates in healthy aging, MCI and AD. METHODS: From the Alzheimer's Disease Neuroimaging Initiative (ADNI), 80 subjects were selected: 20 patients with AD, 40 patients with mild cognitive impairment (MCI) and 20 healthy controls (HCs). Left and right hippocampal volume change between baseline and month-12 visit was assessed by using expert manual delineation, and by the automated software packages FreeSurfer (longitudinal processing stream) and FIRST. To assess reproducibility of the measured hippocampal volume change, both back-to-back (BTB) MPRAGE scans available for each visit were analyzed. Hippocampal volume change was expressed in µL, and as a percentage of baseline volume. Reproducibility of the 1-year hippocampal volume change was estimated from the BTB measurements by using linear mixed model to calculate the limits of agreement (LoA) of each method, reflecting its measurement uncertainty. Using the delta method, approximate p-values were calculated for the pairwise comparisons between methods. Statistical analyses were performed both with inclusion and exclusion of visibly incorrect segmentations. RESULTS: Visibly incorrect automated segmentation in either one or both scans of a longitudinal scan pair occurred in 7.5% of the hippocampi for FreeSurfer and in 6.9% of the hippocampi for FIRST. After excluding these failed cases, reproducibility analysis for 1-year percentage volume change yielded LoA of ±7.2% for FreeSurfer, ±9.7% for expert manual delineation, and ±10.0% for FIRST. Methods ranked the same for reproducibility of 1-year µL volume change, with LoA of ±218 µL for FreeSurfer, ±319 µL for expert manual delineation, and ±333 µL for FIRST. Approximate p-values indicated that reproducibility was better for FreeSurfer than for manual or FIRST, and that manual and FIRST did not differ. Inclusion of failed automated segmentations led to worsening of reproducibility of both automated methods for 1-year raw and percentage volume change. CONCLUSION: Quantitative reproducibility values of 1-year microliter and percentage hippocampal volume change were roughly similar between expert manual outlining, FIRST and FreeSurfer, but FreeSurfer reproducibility was statistically significantly superior to both manual outlining and FIRST after exclusion of failed segmentations.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Hipocampo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Idoso , Algoritmos , Inteligência Artificial , Atrofia , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Variações Dependentes do Observador , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software , Validação de Programas de Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...