Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Rep ; 19(6): 99, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954636

RESUMO

Low molecular weight sulfated galactan (LMSG) supplemented with octanoyl ester (Oct-LMSG) demonstrated superior wound healing activity compared to the unsupplemented LMSG in a fibroblast wound model. To test the hypothesis that the increased bioactivity of Oct-LMSG may depend on its penetration into the plasma membrane, its cellular uptake was investigated and collagen production in fibroblast cells was assessed for the first time. The cellular uptake of Oct-LMSG was examined using indirect immunofluorescence and a confocal laser scanning microscope. In addition, the degree of fibroblast activation associated with this uptake was evaluated. The results indicated increased LMSG internalization in fibroblasts treated with Oct-LMSG. Transmission electron micrographs revealed the ultrastructure of active protein production in fibroblasts upon treatment with Oct-LMSG. In addition, Oct-LMSG upregulated the expression of type I collagen mRNA and proteins, as well as related signaling molecules involved in collagen synthesis, including collagen type I α1 chain (Col1A1), Col1A2, phosphorylated (p)-Smad2/3 and p-Smad4. The current findings support the notion that the supplementation of LMSG with octanoyl enhanced its cellular uptake into fibroblasts and, as a result, regulated the expression of type I collagen in fibroblasts via the activation of the Smad signaling pathway. This study demonstrates the therapeutic potential of Oct-LMSG in promoting tissue regeneration.

2.
Macromol Biosci ; 22(12): e2200172, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066490

RESUMO

Sulfated galactans (SG) isolated from Gracilaria fisheri is partially degraded (DSG), and subsequentially supplemented with octanoyl (DSGO) and sulfate (DSGS) groups. The molecular weights of DSG, DSGO, and DSGS are 7.87, 152.79, and 97.07 kDa, respectively. The modification is confirmed using FTIR and NMR, while in vitro wound healing activity is assessed using scratched wound fibroblasts. The results reveal that DSGO exhibits highest percentage of wound closure in scratched fibroblast L929 cells. Furthermore, DSGO is able to promote proliferation and accelerate migration of scratched fibroblasts, which correspond to the regulation of proteins and mRNA (Ki67, p-FAK, vimentin, and E-cadherin) determined by Western blotting and qPCR analysis. The superior wound healing activity of DSGO is also confirmed in excision wound of rats. The results demonstrate that DSGO significantly enhances the percentage of wound closure, re-epithelialization, and collagen arrangement, increases α-smoth muscle actin (α-SMA) and vimentin expression, and decreases that of tumor necrosis factor-α (TNF-α) at the wound site. The results suggest that degraded SG supplemented with medium-chain fatty acids of octanoyl group may pass through the membrane, subsequently activating the mediators associated with proliferation and migration of fibroblasts, which can potentially lead to the promotion of wound healing activity.


Assuntos
Galactanos , Gracilaria , Ratos , Animais , Galactanos/química , Gracilaria/química , Vimentina , Sulfatos/farmacologia , Cicatrização/fisiologia , Fibroblastos/fisiologia , Suplementos Nutricionais
3.
Anat Cell Biol ; 53(4): 481-492, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-32839357

RESUMO

Prostate cancer is one of the high incidences and the most invasive cancer that is also highly resistant to chemotherapy. Currently, several natural products have been considering using as the supplements for anti-cancer therapy. This study aims to identify the potential active anti-cancer ingredients in the bran extracts of the native Thai rice (Luempua cultivar). Rice bran fraction enriched in anthocyanins was successively isolated and processed until the major purified compound obtained. The sub-fractions and the purified, rice bran, cyanidin 3-glucoside (RBC3G), were studied for biological effects (cell viability, migration, and invasion assays) on human prostatic cancer (PC3) cells using immunohistochemical-staining and immuno-blotting approaches. The sub-fractions and the purified RBC3G inhibited epithelial mesenchymal transition (EMT) characteristics of PC3 cells by blocking the expression of several cytoskeletal associate proteins in a concentration dependent manner, leading to decreasing of the cancer cell motility. RBC3G reduced the expression of Smad/Snail signaling molecules but enhanced the expression of cell surface protein, E-cadherin, leading to a delay tumor transformation. The RBC3G also inhibited matrix metalloproteinase-9 and nuclear factor-kappa B expression levels and the enzymes activity in PC3 cells, leading to a slow cell migration/invasion process. The results suggested that RBC3G blunt and/or delay the progressive cancer cell behaviors by inhibit EMT through Smad signaling pathway(s) mediating Snail/E-cadherin expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...