Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L65-L70, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050688

RESUMO

IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.


Assuntos
Asma , Imunidade Inata , Humanos , Interleucina-33/genética , Linfócitos , Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
2.
Cells ; 11(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359818

RESUMO

Cigarette smoking causes hypomethylation of the gene Aryl Hydrocarbon Receptor Repressor (AHRR), which regulates detoxification and oxidative stress-responses. We investigated whether AHRR DNA methylation is related to chronic obstructive pulmonary disease (COPD) and studied its function in airway epithelial cells (AECs). The association with COPD was assessed in blood from never and current smokers with/without COPD, and in AECs from ex-smoking non-COPD controls and GOLD stage II-IV COPD patients cultured with/without cigarette smoke extract (CSE). The effect of CRISPR/Cas9-induced AHRR knockout on proliferation, CSE-induced mitochondrial membrane potential and apoptosis/necrosis in human bronchial epithelial 16HBE cells was studied. In blood, DNA methylation of AHRR at cg05575921 and cg21161138 was lower in smoking COPD subjects than smoking controls. In vitro, AHRR DNA methylation at these CpG-sites was lower in COPD-derived than control-derived AECs only upon CSE exposure. Upon AHRR knockout, we found a lower proliferation rate at baseline, stronger CSE-induced decrease in mitochondrial membrane potential, and higher CSE-induced late apoptosis/necroptosis. Together, our results show lower DNA methylation of AHRR upon smoking in COPD patients compared to non-COPD controls. Our data suggest that higher airway epithelial AHRR expression may lead to impaired cigarette smoke-induced mitochondrial dysfunction and apoptosis/necroptosis, potentially promoting unprogrammed/immunogenic cell death.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Receptores de Hidrocarboneto Arílico , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fumar Cigarros/efeitos adversos , Metilação de DNA/genética , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nicotiana/efeitos adversos , Nicotiana/metabolismo
3.
Cell Stress Chaperones ; 27(5): 587-597, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029374

RESUMO

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), leading to chronic inflammation, while bacterial components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are often present in airways of COPD patients, especially during exacerbations.We hypothesised that extracellular heat shock protein 70 (eHsp70), a damage-associated molecular pattern elevated in serum of COPD patients, induces inflammation and alters cigarette smoke and LPS/LTA-induced inflammatory effects in the airway epithelium.We used 16HBE cells exposed to recombinant human (rh)Hsp70 and its combinations with cigarette smoke extract (CSE), LPS or LTA to investigate those assumptions, and we determined pro-inflammatory cytokines' secretion as well as TLR2 and TLR4 gene expression.rhHsp70 and CSE alone stimulated IL-6, IL-8 and TNF-α secretion. CSE and rhHsp70 had antagonistic effect on IL-6 secretion, while combinations of LPS or LTA with rhHsp70 showed antagonistic effect on TNF-α release. By using specific inhibitors, we demonstrated that effects of rhHsp70 on cytokines' secretion were mediated via NF-κB and/or MAPK signalling pathways. rhHsp70 increased, and CSE decreased TLR2 gene expression compared to untreated cells, but their combinations increased it compared to CSE alone. LPS and rhHsp70 combinations decreased TLR2 gene expression compared to untreated cells. TLR4 expression was not induced by any of the treatments.In conclusion, we demonstrated that extracellular Hsp70 modulates pro-inflammatory responses of human airway epithelial cells to cigarette smoke and bacterial components LPS and LTA. Simultaneous presence of those compounds and their interactions might lead to inappropriate immune responses and adverse consequences in COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6 , Interleucina-8 , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ácidos Teicoicos , Nicotiana/efeitos adversos , Nicotiana/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa
4.
Cells ; 10(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34831082

RESUMO

COPD is characterized by irreversible lung tissue damage. We hypothesized that lung-derived mesenchymal stromal cells (LMSCs) reduce alveolar epithelial damage via paracrine processes, and may thus be suitable for cell-based strategies in COPD. We aimed to assess whether COPD-derived LMSCs display abnormalities. LMSCs were isolated from lung tissue of severe COPD patients and non-COPD controls. Effects of LMSC conditioned-medium (CM) on H2O2-induced, electric field- and scratch-injury were studied in A549 and NCI-H441 epithelial cells. In organoid models, LMSCs were co-cultured with NCI-H441 or primary lung cells. Organoid number, size and expression of alveolar type II markers were assessed. Pre-treatment with LMSC-CM significantly attenuated oxidative stress-induced necrosis and accelerated wound repair in A549. Co-culture with LMSCs supported organoid formation in NCI-H441 and primary epithelial cells, resulting in significantly larger organoids with lower type II-marker positivity in the presence of COPD-derived versus control LMSCs. Similar abnormalities developed in organoids from COPD compared to control-derived lung cells, with significantly larger organoids. Collectively, this indicates that LMSCs' secretome attenuates alveolar epithelial injury and supports epithelial repair. Additionally, LMSCs promote generation of alveolar organoids, with abnormalities in the supportive effects of COPD-derived LMCS, reflective of impaired regenerative responses of COPD distal lung cells.


Assuntos
Células Epiteliais Alveolares/patologia , Células-Tronco Mesenquimais/patologia , Comunicação Parácrina , Idoso , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Esferoides Celulares/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Front Pharmacol ; 12: 669037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393771

RESUMO

Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.

6.
Eur Respir J ; 57(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32907887

RESUMO

Periostin (POSTN) may serve as a biomarker for Type-2 mediated eosinophilic airway inflammation in asthma. We hypothesised that a Type-2 cytokine, interleukin (IL)-13, induces airway epithelial expression of POSTN, which in turn contributes to epithelial changes observed in asthma.We studied the effect of IL-13 on POSTN expression in BEAS-2B and air-liquid interface differentiated primary bronchial epithelial cells (PBECs). Additionally, the effects of recombinant human POSTN on epithelial-to-mesenchymal transition (EMT) markers and mucin genes were assessed. POSTN single cell gene expression and protein levels were analysed in bronchial biopsies and induced sputum from asthma patients and healthy controls.IL-13 increased POSTN expression in both cell types and this was accompanied by EMT-related features in BEAS-2B. In air-liquid interface differentiated PBECs, IL-13 increased POSTN basolateral and apical release. Apical administration of POSTN increased the expression of MMP-9, MUC5B and MUC5AC In bronchial biopsies, POSTN expression was mainly confined to basal epithelial cells, ionocytes, endothelial cells and fibroblasts, showing higher expression in basal epithelial cells from asthma patients versus those from controls. A higher level of POSTN protein expression in epithelial and subepithelial layers was confirmed in bronchial biopsies from asthma patients when compared to healthy controls. Although sputum POSTN levels were not higher in asthma, levels correlated with eosinophil numbers and with the coughing-up of mucus.POSTN expression is increased by IL-13 in bronchial epithelial cells and is higher in bronchial biopsies from asthma patients. This may have important consequences, as administration of POSTN increases epithelial expression of mucin genes, supporting the relationship of POSTN with Type-2 mediated asthma and mucus secretion.


Assuntos
Asma , Moléculas de Adesão Celular , Células Endoteliais , Brônquios , Células Epiteliais , Humanos , Interleucina-13 , Mucina-5AC
7.
Artigo em Inglês | MEDLINE | ID: mdl-32984077

RESUMO

Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.


Assuntos
Infecções por Picornaviridae , Doença Pulmonar Obstrutiva Crônica , Viroses , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Rhinovirus , Ubiquitina-Proteína Ligases/genética
9.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209336

RESUMO

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Assuntos
Asma/patologia , Pulmão/citologia , Adulto , Idoso , Linfócitos T CD4-Positivos/fisiologia , Comunicação Celular , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Células Caliciformes/metabolismo , Humanos , Pulmão/imunologia , Pulmão/patologia , Masculino , Metaplasia , Pessoa de Meia-Idade , Células Th2/fisiologia , Transcriptoma
10.
Eur Respir J ; 53(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846474

RESUMO

The aim was to investigate whether microRNA (miRNA) expression is modulated by inhaled corticosteroid (ICS) treatmentWe performed genome-wide miRNA analysis on bronchial biopsies of 69 moderate/severe chronic obstructive pulmonary disease (COPD) patients at baseline and after 6- and 30-month treatment with the ICS fluticasone propionate or placebo. The effect of ICS on miRNA expression was validated in differentiated primary bronchial epithelial cultures, and functional studies were conducted in BEAS-2B cells. MiRNAs affected by ICS and their predicted targets were compared to an independent miRNA dataset of bronchial brushings from COPD patients and healthy controls.Treatment with ICS for both 6 and 30 months significantly altered the expression of four miRNAs, including miR-320d, which was increased during ICS treatment compared with placebo. The ICS-induced increase of miR-320d was confirmed in primary airway epithelial cells. MiR-320d negatively correlated targets were enriched for pro-inflammatory genes and were increased in the bronchial brushes of patients with lower lung function in the independent dataset. Overexpression of miR-320d in BEAS-2B cells dampened cigarette smoke extract-induced pro-inflammatory activity via inhibition of nuclear factor-κB.Collectively, we identified miR-320d as a novel mediator of ICS, regulating the pro-inflammatory response of the airway epithelium.


Assuntos
Corticosteroides/farmacologia , Fluticasona/farmacologia , MicroRNAs/biossíntese , MicroRNAs/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Transcriptoma/efeitos dos fármacos , Corticosteroides/administração & dosagem , Idoso , Estudos Transversais , Feminino , Fluticasona/administração & dosagem , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
11.
Biochimie ; 156: 47-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30268700

RESUMO

Extracellular Hsp70 (eHsp70) can activate immune cells via Toll-like receptors (TLR) 2 and 4, and induce cytokine synthesis. The aim of this study was to explore inflammation-associated effects of eHsp70 alone and in combination with cigarette smoke extract (CSE) in primary bronchial epithelial cells. We assessed IL-6 and IL-8 concentrations, TLR2, TLR4 and Hsp70 mRNA expressions, and mitogen-activated protein kinases (MAPKs) activation induced by recombinant human (rh) Hsp70, CSE or their combinations in normal human bronchial epithelial cells (NHBE) obtained commercially, and primary bronchial epithelial cells isolated from non-COPD lung donors (PBEC) or COPD patients (PBEC COPD). Baseline levels of IL-6 and IL-8 were significantly higher in PBEC COPD than in non-COPD PBECs. Upon rhHsp70 stimulation, IL-6 and IL-8 were significantly increased, with the strongest response in COPD-derived PBECs. CSE alone elevated cytokine secretion in all examined cells. rhHsp70 and CSE had antagonistic interactions on IL-8 release in PBECs from COPD patients, while the addition of rhHsp70 further increased CSE-induced IL-6 secretion in NHBE cells. rhHsp70 and CSE alone decreased TLR2 and TLR4 mRNA expression in COPD-derived PBECs. In non-COPD PBECs, combined treatments decreased only TLR2 mRNA expression. Hsp70 mRNA expression, as indicator of intracellular Hsp70, which may have anti-inflammatory effects, was reduced in COPD-derived cells upon exposure to CSE and rhHsp70 alone, but not with their combinations. Contrary to this, in PBECs from lung donors only combined treatments supressed Hsp70 gene expression. CSE activated JNK and p38 MAPKs, while rhHsp70 increased activation of c-Jun kinase in NHBE cells. Collectively, both eHsp70 and CSE induce pro-inflammatory responses in PBECs from non-COPD as well as COPD donors, but in combination antagonistic effects were observed in COPD-derived cells. These effects may be related to the regulation of TLR2/4 and might lead to modulation of inflammation with possible deleterious consequences for COPD patients.


Assuntos
Células Epiteliais/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Células Epiteliais/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Masculino , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia
12.
Respir Res ; 18(1): 213, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268739

RESUMO

BACKGROUND: Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium. METHODS: Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls. RESULTS: In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate < 0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA < 0.001). CONCLUSION: We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD. TRIAL REGISTRATION: ClinicalTrials.gov registration number NCT01351792 (registration date May 10, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 19, 2009), ClinicalTrials.gov registration number NCT00807469 (registration date December 11, 2008).


Assuntos
Brônquios/metabolismo , Mucosa Nasal/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Brônquios/patologia , Estudos de Coortes , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/patologia , Doença Pulmonar Obstrutiva Crônica/genética
13.
Respirology ; 22(2): 401-404, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27679416

RESUMO

Previously, we observed increased serum levels of damage-associated molecular patterns (DAMPs) during COPD exacerbations. Here, gene expression of DAMP receptors was measured in peripheral blood neutrophils of COPD patients during stable disease and severe acute exacerbation. The expression of toll-like receptor (TLR)2, TLR4 and NLR family, pyrin domain-containing 3 (NLRP3) was significantly increased, while serum levels of the soluble form of the decoy receptor for advanced glycation end-product (sRAGE) were decreased during exacerbation. Together, these data indicate that increased DAMP signalling contributes to activation of neutrophils during COPD exacerbations.


Assuntos
Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica , Idoso , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/análise , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores de Reconhecimento de Padrão , Transdução de Sinais , Exacerbação dos Sintomas , Receptor 2 Toll-Like/análise
14.
Eur Respir J ; 48(2): 504-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126693

RESUMO

Wingless/integrase-1 (WNT) signalling is associated with lung inflammation and repair, but its role in chronic obstructive pulmonary disease (COPD) pathogenesis is unclear. We investigated whether cigarette smoke-induced dysregulation of WNT-5B contributes to airway remodelling in COPD.We analysed WNT-5B protein expression in the lung tissue of COPD patients and (non)smoking controls, and investigated the effects of cigarette smoke exposure on WNT-5B expression in COPD and control-derived primary bronchial epithelial cells (PBECs). Additionally, we studied downstream effects of WNT-5B on remodelling related genes fibronectin, matrix metalloproteinase (MMP)-2, MMP-9 and SnaiI in BEAS-2B and air-liquid interface (ALI)-cultured PBECs.We observed that airway epithelial WNT-5B expression is significantly higher in lung tissue from COPD patients than controls. Cigarette smoke extract significantly increased mRNA expression of WNT-5B in COPD, but not control-derived PBECs. Exogenously added WNT-5B augmented the expression of remodelling related genes in BEAS-2B cells, which was mediated by transforming growth factor (TGF)-ß/Smad3 signalling. In addition, WNT-5B upregulated the expression of these genes in ALI-cultured PBECs, particularly PBECs from COPD patients.Together, our results provide evidence that exaggerated WNT-5B expression upon cigarette smoke exposure in the bronchial epithelium of COPD patients leads to TGF-ß/Smad3-dependent expression of genes related to airway remodelling.


Assuntos
Epitélio/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Proteínas Wnt/metabolismo , Idoso , Idoso de 80 Anos ou mais , Brônquios/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Fibronectinas , Humanos , Inflamação , Pulmão/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/citologia , Transdução de Sinais , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Nicotiana , Produtos do Tabaco , Fator de Crescimento Transformador beta/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1112-23, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320152

RESUMO

In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3ß (GSK3ß) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3ß is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3ß-Ser9, a marker of GSK3ß inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3ß-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3ß did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3ß inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3ß inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3ß, acting as a ROS-sensitive hub.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Quinase 3 da Glicogênio Sintase/fisiologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Células Cultivadas , Dexametasona/uso terapêutico , Feminino , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Histona Desacetilase 2/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos Alveolares/enzimologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/enzimologia , Transdução de Sinais
16.
Thorax ; 70(1): 21-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24990664

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive, incurable lung disease characterised by abnormal tissue repair causing emphysema and small airways fibrosis. Since current therapy cannot modify this abnormal repair, it is crucial to unravel its underlying molecular mechanisms. Unbiased analysis of genome-wide gene expression profiles in lung tissue provides a powerful tool to investigate this. METHODS: We performed genome-wide gene expression profiling in 581 lung tissue samples from current and ex-smokers with (n=311) and without COPD (n=270). Subsequently, quantitative PCR, western blot and immunohistochemical analyses were performed to validate our main findings. RESULTS: 112 genes were found to be upregulated in patients with COPD compared with controls, whereas 61 genes were downregulated. Among the most upregulated genes were fibulin-5 (FBLN5), elastin (ELN), latent transforming growth factor ß binding protein 2 (LTBP2) and microfibrillar associated protein 4 (MFAP4), all implicated in elastogenesis. Our gene expression findings were validated at mRNA and protein level. We demonstrated higher ELN gene expression in COPD lung tissue and similar trends for FBLN5 and MFAP4, and negative correlations with lung function. FBLN5 protein levels were increased in COPD lung tissue and cleaved, possibly non-functional FBLN5 protein was present. Strong coexpression of FBLN5, ELN, LTBP2 and MFAP4 in lung tissue and in silico analysis indicated cofunctionality of these genes. Finally, colocalisation of FBLN5, MFAP4 and LTBP2 with elastic fibres was demonstrated in lung tissue. CONCLUSIONS: We identified a clear gene signature for elastogenesis in COPD and propose FBLN5 as a novel player in tissue repair in COPD.


Assuntos
Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA Mensageiro/genética , Idoso , Western Blotting , Elasticidade , Proteínas da Matriz Extracelular/biossíntese , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
17.
Eur Respir J ; 44(2): 361-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24627531

RESUMO

Th17-mediated neutrophilic airway inflammation has been implicated in decreased response to glucocorticoids in asthma. We aimed to investigate the effect of glucocorticoids on the airway epithelial release of the neutrophilic and Th17-cell chemoattractant CCL20. We studied CCL20 and CXCL8 sputum levels in asthmatic subjects using inhaled glucocorticoids or not, and the effect of budesonide on CCL20 and CXCL8 production in primary bronchial epithelial cells. The mechanism behind the effect of budesonide-induced CCL20 production was studied in 16HBE14o- cells using inhibitors for the glucocorticoid receptor, intracellular pathways and metalloproteases. We observed higher levels of CCL20, but not CXCL8, in the sputum of asthmatics who used inhaled glucocorticoids. CCL20 levels correlated with inhaled glucocorticoid dose and sputum neutrophils. Budesonide increased tumour necrosis factor (TNF)-α-induced CCL20 by primary bronchial epithelium, while CXCL8 was suppressed. In 16HBE14o- cells, similar effects were observed at the CCL20 protein and mRNA levels, indicating transcriptional regulation. Although TNF-α-induced CCL20 release was dependent on the ERK, p38 and STAT3 pathways, the increase by budesonide was not. Inhibition of glucocorticoid receptor or ADAM17 abrogated the budesonide-induced increase in CCL20 levels. We show that glucocorticoids enhance CCL20 production by bronchial epithelium, which may constitute a novel mechanism in Th17-mediated glucocorticoid-insensitive inflammation in asthma.


Assuntos
Asma/metabolismo , Quimiocina CCL20/metabolismo , Epitélio/metabolismo , Glucocorticoides/farmacologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Adulto , Idoso , Budesonida/uso terapêutico , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-8/metabolismo , Masculino , Metaloproteases/metabolismo , Pessoa de Meia-Idade , Neutrófilos/imunologia , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT3/metabolismo , Escarro/metabolismo , Células Th17/citologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 305(8): L582-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23997174

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal repair in the lung resulting in airway obstruction associated with emphysema and peripheral airway fibrosis. Because the presence and degree of airways disease and emphysema varies between COPD patients, this may explain the heterogeneity in the response to treatment. It is currently unknown whether and to what extent inhaled steroids can affect the abnormal repair process in the airways and lung parenchyma in COPD. We investigated the effects of fluticasone on transforming growth factor (TGF)-ß- and cigarette smoke-induced changes in mothers against decapentaplegic homolog (Smad) signaling and extracellular matrix (ECM) production in airway and parenchymal lung fibroblasts from patients with severe COPD. We showed that TGF-ß-induced ECM production by pulmonary fibroblasts, but not activation of the Smad pathway, was sensitive to the effects of fluticasone. Fluticasone induced decorin production by airway fibroblasts and partly reversed the negative effects of TGF-ß treatment. Fluticasone inhibited biglycan production in both airway and parenchymal fibroblasts and procollagen 1 production only in parenchymal fibroblasts, thereby restoring the basal difference in procollagen 1 production between airway and parenchymal fibroblasts. Our findings suggest that the effects of steroids on the airway compartment may be beneficial for patients with severe COPD, i.e., restoration of decorin loss around the airways, whereas the effects of steroids on the parenchyma may be detrimental, since the tissue repair response, i.e., biglycan and procollagen production, is inhibited. More research is needed to further disentangle these differential effects of steroid treatment on the different lung compartments and its impact on tissue repair and remodeling in COPD.


Assuntos
Androstadienos/farmacologia , Anti-Inflamatórios/farmacologia , Biglicano/biossíntese , Decorina/biossíntese , Fibroblastos/metabolismo , Pulmão/metabolismo , Pró-Colágeno/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Cultivadas , Feminino , Fibroblastos/patologia , Fluticasona , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Índice de Gravidade de Doença , Fumar/efeitos adversos , Fumar/metabolismo , Fator de Crescimento Transformador beta/farmacologia
19.
PLoS One ; 6(9): e25450, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980461

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by abnormal extracellular matrix (ECM) turnover. Recently, activation of the WNT/ß-catenin pathway has been associated with abnormal ECM turnover in various chronic diseases. We determined WNT-pathway gene expression in pulmonary fibroblasts of individuals with and without COPD and disentangled the role of ß-catenin in fibroblast phenotype and function. METHODS: We assessed the expression of WNT-pathway genes and the functional role of ß-catenin, using MRC-5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. RESULTS: Pulmonary fibroblasts expressed mRNA of genes required for WNT signaling. Stimulation of fibroblasts with TGF-ß1, a growth factor important in COPD pathogenesis, induced WNT-5B, FZD8, DVL3 and ß-catenin mRNA expression. The induction of WNT-5B, FZD6, FZD8 and DVL3 mRNA by TGF-ß1 was higher in fibroblasts of individuals with COPD than without COPD, whilst basal expression was similar. Accordingly, TGF-ß1 activated ß-catenin signaling, as shown by an increase in transcriptionally active and total ß-catenin protein expression. Furthermore, TGF-ß1induced the expression of collagen1α1, α-sm-actin and fibronectin, which was attenuated by ß-catenin specific siRNA and by pharmacological inhibition of ß-catenin, whereas the TGF-ß1-induced expression of PAI-1 was not affected. The induction of transcriptionally active ß-catenin and subsequent fibronectin deposition induced by TGF-ß1 were enhanced in pulmonary fibroblasts from individuals with COPD. CONCLUSIONS: ß-catenin signaling contributes to ECM production by pulmonary fibroblasts and contributes to myofibroblasts differentiation. WNT/ß-catenin pathway expression and activation by TGF-ß1 is enhanced in pulmonary fibroblasts from individuals with COPD. This suggests an important role of the WNT/ß-catenin pathway in regulating fibroblast phenotype and function in COPD.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proteínas Desgrenhadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas/metabolismo , Receptores Frizzled/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fenótipo , Fosfoproteínas/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
20.
Respir Res ; 9: 83, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19087346

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGFbeta induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. METHODS: We compared gene expression of the Smad pathway at different time points after stimulation with TGFbeta, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. RESULTS: Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGFbeta stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGFbeta stimulation. CSE hardly influenced gene expression of the TGFbeta-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. CONCLUSION: Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Proteoglicanas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Proteínas Smad/metabolismo , Células Cultivadas , Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...