Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Commun ; 15(1): 3868, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719793

RESUMO

This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h-1 L reactor -1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.

2.
J Gastrointest Oncol ; 15(2): 755-767, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756646

RESUMO

Background: Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers. Methods: We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score. Results: Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1]. Conclusions: Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.

3.
Sci Rep ; 14(1): 3966, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368434

RESUMO

Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution-precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g-1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.

4.
Commun Chem ; 6(1): 273, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087001

RESUMO

Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique.

5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361759

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death that typically presents at an advanced stage. No reliable markers for early detection presently exist. The prominent tumor stroma represents a source of circulating biomarkers for use together with cancer cell-derived biomarkers for earlier PDAC diagnosis. CA19-9 and CEA (cancer cell-derived biomarkers), together with endostatin and collagen IV (stroma-derived) were examined alone, or together, by multivariable modelling, using pre-diagnostic plasma samples (n = 259 samples) from the Northern Sweden Health and Disease Study biobank. Serial samples were available for a subgroup of future patients. Marker efficacy for future PDAC case prediction (n = 154 future cases) was examined by both cross-sectional (ROC analysis) and longitudinal analyses. CA19-9 performed well at, and within, six months to diagnosis and multivariable modelling was not superior to CA19-9 alone in cross-sectional analysis. Within six months to diagnosis, CA19-9 (AUC = 0.92) outperformed the multivariable model (AUC = 0.81) at a cross-sectional level. At diagnosis, CA19-9 (AUC = 0.995) and the model (AUC = 0.977) performed similarly. Longitudinal analysis revealed increases in CA19-9 up to two years to diagnosis which indicates a window of opportunity for early detection of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Estudos Transversais , Detecção Precoce de Câncer , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Biomarcadores Tumorais , Plasma , Neoplasias Pancreáticas
6.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884455

RESUMO

Circulating type IV collagen (cCOL IV) is a potential biomarker for patients with colorectal liver metastases (CLM) who present with elevated levels of COL IV in both CLM tissue and circulation. This study aimed to establish the cellular origin of elevated levels of COL IV and analyze circulating COL IV in CLM patients. The cellular source was established through in situ hybridization, immunohistochemical staining, and morphological evaluation. Cellular expression in vitro was assessed by immunofluorescence. Tissue expression of COL IV-degrading matrix metalloproteinases (MMPs)-2, -7, -9, and -13 was studied with immunohistochemical staining. Plasma levels of COL IV in CLM patients and healthy controls were analyzed with ELISA. This study shows that cancer-associated fibroblasts (CAFs) express COL IV in the stroma of CLM and that COL IV is expressed in vitro by fibroblasts but not by tumor cells. MMP-2, -7, -9, and -13 are expressed in CLM tissue, mainly by hepatocytes and immune cells, and circulating COL IV is significantly elevated in CLM patients compared with healthy controls. Our study shows that stromal cells, not tumor cells, produce COL IV in CLM, and that circulating COL IV is elevated in patients with CLM.

7.
Water Res ; 222: 118875, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870392

RESUMO

The blooming of beach-cast seaweed has caused environmental degradation in some coastal regions. Therefore, a proper treating and utilizing method of beach-cast seaweed is demanded. This study investigated the potential of producing power or biofuel from pyrolysis of beach-cast seaweed and the effect of the ash-washing process. First, the raw and washed beach-cast seaweeds (RS and WS) were prepared. Thereafter, thermogravimetric analysis (TG), bench-scale pyrolysis experiment, process simulation, and life cycle assessment (LCA) were conducted. The TG results showed that the activation energies of thermal decomposition of the main organic contents of RS and WS were 44.23 and 58.45 kJ/mol, respectively. Three peak temperatures of 400, 500, and 600 °C were used in the bench-scale pyrolysis experiments of WS. The 600 °C case yielded the most desirable gas and liquid products. The bench-scale pyrolysis experiment of RS was conducted at 600 °C as well. Also, an LCA was conducted based on the simulation result of 600 °C pyrolysis of WS. The further process simulation and LCA results show that compare to producing liquid biofuel and syngas, a process designed for electricity production is most favored. It was estimated that treating 1 ton of dry WS can result in a negative cumulative energy demand of -2.98 GJ and carbon emissions of -790.89 kg CO2 equivalence.


Assuntos
Pirólise , Alga Marinha , Animais , Biocombustíveis , Estágios do Ciclo de Vida , Temperatura , Verduras
8.
BJS Open ; 6(3)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652588

RESUMO

BACKGROUND: Colorectal anastomotic leakage can be considered a process of failed wound healing, for which related biomarkers might be a promising research area to decrease leak rates. METHODS: Patients who had elective surgery with a primary anastomosis for non-metastatic colorectal cancer, at two university hospitals between 1 January 2010 and 31 December 2015 were included. Patients with an anastomotic leak were identified and matched (1:1) to complication-free controls on the basis of sex, age, tumour stage, tumour location, and operating hospital. Preoperative blood samples were analysed by use of protein panels associated with systemic or enteric inflammation by proteomics, and enzyme-linked immunosorbent assays. Multivariable projection methods were used in the statistical analyses and adjusted for multiple comparisons to reduce false positivity. Rectal cancer tissue samples were evaluated with immunohistochemistry to determine local expression of biomarkers that differed significantly between cases and controls. RESULTS: Out of 726 patients undergoing resection, 41 patients with anastomotic leakage were matched to 41 controls. Patients with rectal cancer with leakage displayed significantly elevated serum levels of 15 proteins related to inflammation. After controlling for a false discovery rate, levels of C-X-C motif chemokine 6 (CXCL6) and C-C motif chemokine 11 (CCL11) remained significant. In patients with colonic cancer with leakage, levels of high-sensitivity C-reactive protein (hs-CRP) were increased before surgery. Local expression of CXCL6 and CCL11, and their receptors, were similar in rectal tissues between cases and controls. CONCLUSION: Patients with anastomotic leakage could have an upregulated inflammatory response before surgery, as expressed by elevated serological levels of CXCL6 and CCL11 for rectal cancer and hs-CRP levels in patients with colonic cancer respectively.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Fístula Anastomótica/diagnóstico , Fístula Anastomótica/etiologia , Fístula Anastomótica/cirurgia , Biomarcadores , Proteína C-Reativa , Quimiocinas , Humanos , Inflamação/etiologia , Neoplasias Retais/cirurgia
9.
Materials (Basel) ; 15(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407861

RESUMO

Typical non-metallic inclusions in two industrial low-carbon steels for oil pipelines were investigated as three-dimensional objects on film filters after electrolytic extraction and filtration of metal samples. A method of soft chemical extraction using a 10%AA electrolyte was used to study the initial corrosion process in the steel matrix surrounding various non-metallic inclusions. To determine and compare "corrosive" inclusions and their influence on the initial stages of corrosion of the adjacent layer of the steel matrix, quantitative parameters (such as the diameter of the corrosion crater (Dcr) and pit (Dpit), and the relative dissolution coefficient of the metal matrix (KD) around various inclusions) were determined after chemical extraction. It was found that CaO-Al2O3-MgO oxides and TiN inclusions did not cause an initial corrosion of the steel matrix surrounding these inclusions. However, tensile stresses in the steel matrix occurred around CaS inclusions (or complex inclusions containing a CaS phase), which contributed to the initiation of corrosion around these inclusions.

10.
Neuro Oncol ; 24(9): 1454-1468, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157758

RESUMO

BACKGROUND: Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs contributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted therapy. METHODS: Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of glioma tissue from 224 tumors-oligodendroglioma (n = 31), astrocytoma (n = 31) and glioblastoma (n = 162)-were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-mutation, 1p/19q-codeletion, WHO-grading 2-4, and MGMT promoter methylation. RESULTS: Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, expressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable metabolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high expression of glycerophosphates, inositols, monosaccharides, and sugar alcohols and low levels of sphingosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and glioblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet defined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma with bimorphic tissue. CONCLUSION: Key metabolic differences exist across adult glioma subtypes.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Organização Mundial da Saúde
11.
Cancers (Basel) ; 13(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771485

RESUMO

Early detection of pancreatic ductal adenocarcinoma (PDAC) is challenging, and late diagnosis partly explains the low 5-year survival. Novel and sensitive biomarkers are needed to enable early PDAC detection and improve patient outcomes. Tissue polypeptide specific antigen (TPS) has been studied as a biomarker in PDAC diagnostics, and it has previously been shown to reflect clinical status better than the 'golden standard' biomarker carbohydrate antigen 19-9 (CA 19-9) that is most widely used in the clinical setting. In this cross-sectional case-control study using pre-diagnostic plasma samples, we aim to evaluate the potential of TPS as a biomarker for early PDAC detection. Furthermore, in a subset of individuals with multiple samples available at different time points before diagnosis, a longitudinal analysis was used. We assessed plasma TPS levels using enzyme-linked immunosorbent assay (ELISA) in 267 pre-diagnostic PDAC plasma samples taken up to 18.8 years before clinical PDAC diagnosis and in 320 matched healthy controls. TPS levels were also assessed in 25 samples at PDAC diagnosis. Circulating TPS levels were low both in pre-diagnostic samples of future PDAC patients and in healthy controls, whereas TPS levels at PDAC diagnosis were significantly increased (odds ratio 1.03; 95% confidence interval: 1.01-1.05) in a logistic regression model adjusted for age. In conclusion, TPS levels increase late in PDAC progression and hold no potential as a biomarker for early detection.

12.
Materials (Basel) ; 14(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500896

RESUMO

Different stainless steel slags have been successfully employed in previous experiments, for the treatment of industrial acidic wastewaters. Although, before this technology can be implemented on an industrial scale, upscaled pilot experiments need to be performed. In this study, the parameters of the upscale trials, such as the volume and mixing speeds, are firstly tested by dispersing a NaCl tracer in a water bath. Mixing time trials are used to maintain constant mixing conditions when the volumes are increased to 70, 80 and 90 L, compared to the 1 L laboratory trials. Subsequently, the parameters obtained are used in pH buffering trials, where stainless steel slags are used as reactants, replicating the methodology of previous studies. Compared to laboratory trials, the study found only a minor loss of efficiency. Specifically, in previous studies, 39 g/L of slag was needed to buffer the pH of the acidic wastewaters. To reach similar pH values within the same time span, upscaled trials found a ratio of 43 g/L and 44 g/L when 70 and 90 L are used, respectively. Therefore, when the kinetic conditions are controlled, the technology appears to be scalable to higher volumes. This is an important finding that hopefully promotes further investments in this technology.

13.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070215

RESUMO

In this study, CaO-containing wastes from pulp and paper industries such as fly ash (FA) and calcined lime mud (LM) were utilized to neutralize and purify acidic wastewaters from the pickling processes in steel mills. The investigations were conducted by laboratory scale trials using four different batches of wastewaters and additions of two types of CaO-containing waste materials. Primary lime (PL), which is usually used for the neutralization, was also tested in the same experimental set up in the sake of comparison. The results show that these secondary lime sources can effectively increase the pH of the acidic wastewaters as good as the commonly used primary lime. Therefore, these secondary lime sources could be potential candidates for application in neutralization processes of industrial acidic wastewater treatment. Moreover, concentrations of metals (such as Cr, Fe, Ni, Mo and Zn) can decrease dramatically after neutralization by using secondary lime. The LM has a purification effect from the given metals, similar to the PL. Application of fly ash and calcined lime mud as neutralizing agents can reduce the amount of waste from pulp and paper mills sent to landfill and decrease the need for nature lime materials in the steel industry.

14.
Waste Manag ; 128: 211-220, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000691

RESUMO

Effective recycling of metallic waste and end-of-life vehicles (ELVs) is of crucial importance. Currently used separation and sorting techniques result in the formation of fine residue (usually below 10-20 mm) called shredder fines. Shredder fines contain the so-called 'fluff' (i.e., foam, wood and textile fibres) with metal particles entangled in it. This 'fluff' interferes with sorting techniques and thus reduces the metal recycling rate. For this reason, presently, shredder fines are primarily landfilled, which is not covered by the greater objective of the circular economy; therefore, the need for their recycling emerged. Low-temperature pyrolysis (torrefaction) increases the 'fluff' fragility and thus liberates the metal particles without their substantial oxidation, thereby enabling their recycling. For that reason, in this article, shredder fines torrefaction was performed at the temperature range of 250-450 °C. The process products were comprehensively characterised using, among others, MicroGC (non-condensables), GC/MS (condensables), and ICP-SFMS (char). The possible application of the torrefied shredder fines after the metal sorting was discussed as well. Torrefaction was identified as a promising way of shredder fines recycling, and the torrefied shredder fines after metals sorting have the potential to be used as an ingredient of a raw material mix for cement kilns.


Assuntos
Automóveis , Reciclagem , Cromatografia Gasosa-Espectrometria de Massas , Metais
15.
Materials (Basel) ; 14(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920392

RESUMO

Natural convection of molten steel flow in a tundish occurs due to the temperature variation of the inlet stream and heat losses through top surface and refractory walls. A computational fluid dynamics (CFD) model was applied to study the effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. The CFD model was first validated with the experimental data from a non-isothermal water model and then applied to both scale-down model and prototype. The effects of flow control devices, including weir, dam and turbulence inhibitor, were compared and analyzed. Parameter studies of different heat losses through the top surface were performed. The results show that thermal buoyancy has a significant impact on the flow pattern and temperature distributions of molten steel in the tundish. The increase of heat loss through the top surface shortens the mean residence time of molten steel in the tundish, leading to an increase in dead volume fraction and a decrease in plug flow volume fraction.

16.
Materials (Basel) ; 14(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573038

RESUMO

The flow behavior of gas in compressible and incompressible systems was investigated at an ambient temperature in an air-water system and at an operating process temperature in the IronArc system, using computational fluid dynamics. The simulation results were verified by experiments in the air-water system and established empirical equations to enable reliable predictions of the penetration length. The simulations in the air-water system were found to replicate the experimental behavior using both the incompressible and compressible models, with only small deviations of 7-8%. A lower requirement for the modified Froude number of the gas blowing to produce a jetting behavior was also found. For gas blowing below the required modified Froude number, the results illustrate that the gas will form large pulsating bubbles instead of a steady jet, which causes the empirical equation calculations to severely underpredict the penetration length. The lower modified Froude number limit was also found to be system dependent and to have an approximate value of 300 for the studied IronArc system. For submerged blowing applications, it was found that it is important to ensure sufficiently high modified Froude numbers of the gas blowing. Then, the gas penetration length will remain stable as a jet and it will be possible to predict the values using empirical equations.

17.
Chemosphere ; 271: 129561, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33453478

RESUMO

A series of magnetic bio-activated carbon (MBAC) has been produced from lignin and ferrous salts following to the process including impregnation, carbonization, and steam activation. The influence of the impregnation methods and the steam flow rate on the quality and the maximum phosphorus adsorption capacity of the produced MBACs has been investigated. The phosphorus adsorption performance in real domestic wastewater of the MBAC with the highest maximum phosphorus adsorption capacity has been investigated. The results show that all of the produced MBACs have a relatively rich porous structure, and all surface iron species exist as magnetite (Fe3O4). Compared with the MBACs that are produced via the dry impregnation method using a lower steam flow rate, the MBACs that are produced via the wet impregnation method using a higher steam flow rate are believed to have a higher iron content and better iron species dispersion. The highest maximum phosphorus adsorption capacity of all the produced MBACs is estimated to be as high as 69.80 mg-P/g according to the best-fitting Langmuir model. The MBAC that shows the highest maximum phosphorus adsorption capacity could also remove 84.65% and 96.97% of the total phosphorus from the filtered raw domestic wastewater (FRDW) and treated domestic wastewater (TDW), respectively, which indicates a good potential for using MBACs for domestic wastewater treatment.


Assuntos
Carvão Vegetal , Águas Residuárias , Adsorção , Fenômenos Magnéticos , Fósforo
18.
Cancers (Basel) ; 12(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198241

RESUMO

Here, we present a strategy for early molecular marker pattern detection-Subset analysis of Matched Repeated Time points (SMART)-used in a mass-spectrometry-based metabolomics study of repeated blood samples from future glioma patients and their matched controls. The outcome from SMART is a predictive time span when disease-related changes are detectable, defined by time to diagnosis and time between longitudinal sampling, and visualization of molecular marker patterns related to future disease. For glioma, we detect significant changes in metabolite levels as early as eight years before diagnosis, with longitudinal follow up within seven years. Elevated blood plasma levels of myo-inositol, cysteine, N-acetylglucosamine, creatinine, glycine, proline, erythronic-, 4-hydroxyphenylacetic-, uric-, and aceturic acid were particularly evident in glioma cases. We use data simulation to ensure non-random events and a separate data set for biomarker validation. The latent biomarker, consisting of 15 interlinked and significantly altered metabolites, shows a strong correlation to oxidative metabolism, glutathione biosynthesis and monosaccharide metabolism, linked to known early events in tumor development. This study highlights the benefits of progression pattern analysis and provide a tool for the discovery of early markers of disease.

19.
ACS Omega ; 5(45): 28992-29001, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225130

RESUMO

Catalyst regeneration is economically attractive, and it saves resources. Thus, it is important to determine the influence of catalyst regeneration on the chemical composition of upgraded oil. The catalyst was regenerated several times, and the regenerated catalyst was reloaded in the reactor to proceed with the next run. The composition of the derived upgraded pyrolysis oils in relation to catalyst regeneration was determined. The results revealed that the catalyst cracking abilities decreased with an increased number of reaction cycles. The opposite trends of the organic fraction and water yields indicated that the deoxygenation process occurred via H2O production. A decrease in the CO and CO2 yields revealed that the deoxygenation in catalytic pyrolysis with a catalyst mixture occurred via decarbonylation, decarboxylation, and dehydration mechanisms. The chemical formula of bio-oil changed from CH0.17O0.91 for a noncatalytic experiment to CH0.14O0.66 for a catalytic pyrolysis experiment after five reaction cycles, which indicated that the oxygen in the bio-oil decreased at the expense of hydrogen. The high heating value (HHV) of bio-oils decreased as the number of reaction cycles increased, albeit the minimum value of 22.41 wt % in the 6th reaction cycle was still higher than the value for the noncatalytic experiment. Compared to the HHVs of diesel fuel and gasoline petrol, the values of the produced bio-oil with catalyst mixtures were still low. The catalyst regained 94% of the surface area for the fresh catalyst, which indicated that the regeneration procedure was effective.

20.
Br J Cancer ; 122(2): 221-232, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819184

RESUMO

BACKGROUND: High-grade gliomas are associated with poor prognosis. Tumour heterogeneity and invasiveness create challenges for effective treatment and use of systemically administrated drugs. Furthermore, lack of functional predictive response-assays based on drug efficacy complicates evaluation of early treatment responses. METHODS: We used microdialysis to deliver cisplatin into the tumour and to monitor levels of metabolic compounds present in the tumour and non-malignant brain tissue adjacent to tumour, before and during treatment. In parallel, we collected serum samples and used multivariate statistics to analyse the metabolic effects. RESULTS: We found distinct metabolic patterns in the extracellular fluids from tumour compared to non-malignant brain tissue, including high concentrations of a wide range of amino acids, amino acid derivatives and reduced levels of monosaccharides and purine nucleosides. We found that locoregional cisplatin delivery had a strong metabolic effect at the tumour site, resulting in substantial release of glutamic acid, phosphate, and spermidine and a reduction of cysteine levels. In addition, patients with long-time survival displayed different treatment response patterns in both tumour and serum. Longer survival was associated with low tumour levels of lactic acid, glyceric acid, ketoses, creatinine and cysteine. Patients with longer survival displayed lower serum levels of ketohexoses, fatty acid methyl esters, glycerol-3-phosphate and alpha-tocopherol, while elevated phosphate levels were seen in both tumour and serum during treatment. CONCLUSION: We highlight distinct metabolic patterns associated with high-grade tumour metabolism, and responses to cytotoxic cisplatin treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cisplatino/administração & dosagem , Glioma/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Cisplatino/metabolismo , Feminino , Glioma/metabolismo , Glioma/patologia , Glioma/cirurgia , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Microdiálise/métodos , Pessoa de Meia-Idade , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...