Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 17(4)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35487207

RESUMO

Membranes prepared for guided bone regeneration (GBR) signify valued resources, inhibiting fibrosis and assisting bone regenration. However, existing membranes lack bone regenerative capacity or adequate degradation profile. An alginate-casted polycaprolactone-gelatin-ß-tricalcium phosphate dual membrane was fabricated by electrospinning and casting processes to enhance new bone formation under a GBR process. Porous membranes were synthesized with suitable hydrophilicity, swelling, and degradation behavior to confirm the compatibility of the product in the body. Furthermore, osteoblast-type cell toxicity and cell adhesion results showed that the electrospun membrane offered compatible environment to cells while the alginate sheet was found capable enough to supress the cellular attachment, but was a non-toxic material. Post-implantation, thein-vivooutcomes of the dual-layered membrane, showed appreciable bone formation. Significantly, osteoid islands had fused in the membrane group by eight weeks. The infiltration of fibrous tissues was blocked by the alginate membrane, and the ingrowth of new bone was enhanced. Immunocytochemical analysis indicated that the dual membrane could direct more proteins which control mineralization and convene osteoconductive properties of tissue-engineered bone grafts.


Assuntos
Alginatos , Gelatina , Materiais Biocompatíveis/química , Regeneração Óssea , Fosfatos de Cálcio , Poliésteres/química
2.
J Biomater Sci Polym Ed ; 32(12): 1530-1547, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33849401

RESUMO

Anastomotic leakage due to post-surgical suture line disruption is one of the crucial factors affecting patient's survival and quality of life. To resolve the poor healing of surgical anastomosis and protect suture sites leakage, fibrous membrane sealing patch was developed using a synthetic polymer (polycaprolactone (PCL)) and biopolymer (gelatin). Electrospinning was used to develop fibrous architecture of membranes fabricated in different ratios (15% (w/v) PCL: 15% (w/v) gelatin mixing ratio of 1:1, 1:2, 1:3 and 1:4). Experimental findings suggested that, higher gelatin content in the membranes reduced the fiber diameter and contact angle, leading to a more hydrophilic scaffold facilitating attachment to the defect site. The degradation rate of various PCL-gelatin membranes (P1G1, P1G2, P1G3 and P1G4) was proportional to the gelatin content. Cytocompatibility was assessed using L929 cells while the P1G4 (PCL: gelatin 1:4 ratio) scaffold exhibited optimum outcome. From in vivo study, the wound site healed significantly without any leakage when the sutured area of rat caecum was covered with P1G4 membrane whereas rats in the control group (suture only) showed leakage after two weeks of surgery. In summary, the P1G4 membrane has potential to be applied as a post-surgical leakage-preventing tissue repair biomaterial.


Assuntos
Materiais Biocompatíveis , Gelatina , Fístula Anastomótica/etiologia , Fístula Anastomótica/prevenção & controle , Animais , Materiais Biocompatíveis/farmacologia , Poliésteres , Qualidade de Vida , Ratos , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA