Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441383

RESUMO

Across Canada, farmers are encouraged to adopt beneficial management practices (BMPs) to protect soil heath, reduce green house gas emissions and mitigate off-site impacts from agriculture. Measuring the uptake of BMPs, including the implementation of conservation tillage, helps gauge the success of policies and programs to promote adoption. Satellites are one way to monitor BMP adoption and Synthetic Aperture Radars (SARs) are of particular interest given their all-weather data collection capability. This research investigated coherent change detection (CCD) to determine when farmers harvest and till their fields. A time series of both Sentinel-1 and RADARSAT Constellation Mission (RCM) images was acquired over a site in the Canadian Lake Erie basin, during the autumn of 2021, when farmers were harvesting and tilling fields of corn, soybeans and wheat. 16 CCD pairs were created and coherence values were interpreted based on observations collected for 101 fields. An m-chi decomposition was applied to the RCM data, and the Volume/Surface (V/S) ratio was calculated as an additional source of information to interpret results. Change events due to harvest, tillage, autumn seeding and chemical termination resulted in coherence values below 0.20. The mean and standard deviation for fields with observed change was 0.18 ± 0.03. Coherence values were 0.42 ± 0.15 for fields where no change was noted. Tests confirmed that the coherence associated with changed and unchanged fields was significantly different. Coherence values could also differentiate between some types of management events, including tillage and harvest. CCD could also separate harvest as a function of crop type (corn or soybeans). V/S ratios declined after tillage events but increased after both harvesting and chemical termination. Narrowing the date of harvest and tillage is as important as detecting change. To meet this requirement, Sentinel-1 and RCM CCD products with values below 0.20 (indicating change had occurred), were graphically overlaid. With this approach, the timing of corn harvest was identified as occurring within a 5-day window. The tilling of corn, soybeans and wheat was narrowed to a 4-day window. The results of this research confirmed that CCD can be used to capture change due to autumn agricultural activities, and this technique can also separate change due to harvest and tillage. Finally, this study demonstrated that when data from different SAR missions are combined in a virtual constellation, timing of harvest and tillage can be more precisely defined.

2.
J Environ Qual ; 48(5): 1156-1166, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31589738

RESUMO

Adequate phosphorus (P) is needed for crop production, but excessive P poses a potential risk to water quality. Results from the cumulative P balance calculations within the indicator of risk of water contamination by phosphorus (IROWC-P) developed in Canada were assessed to determine the spatial and temporal trends in P accumulation at a regional scale and to consider the implications of these trends. Regional cumulative P balances were calculated from census data as a proxy for soil test P (STP) values, including the contribution of fertilizer or manure P to these balances. Ideally, over time we would see a convergence of soil test values at the low end of the critical response range for crop growth, where agronomic and environmental considerations are balanced, but this does not appear to be the case for many regions in Canada. Nationally, about 61% of agricultural land was predicted to be low in STP, and over half of this land is failing to replace the P that is removed each year. While only about 10% of the agricultural land has accumulated significantly more P than is needed for crop growth, almost all of this land is continuing to accumulate P rather than drawing it down. Manure is the dominant P source for continuing accumulation in regions with high or very high estimated STP; reducing this input will be difficult because of the nature of manure and the investment in buildings and infrastructure tied to specific locations, but it is clear that current Canadian policies need strengthened.


Assuntos
Fósforo , Solo , Agricultura , Canadá , Fertilizantes , Esterco
3.
Sensors (Basel) ; 18(3)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495497

RESUMO

Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as "app" method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph-grid and script methods (R² = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by -6.3% and -10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., -5.3% vs. -7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming.

4.
Sci Total Environ ; 633: 600-607, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29587229

RESUMO

Many environmental studies require the characterization of a large geographical region using a range of representative sites amenable to intensive study. A systematic approach to selecting study areas can help ensure that an adequate range of the variables of interest is captured. We present a novel method of selecting study sites representing a larger region, in which the region is divided into subregions, which are characterized with relevant independent variables, and displayed in mathematical variable space. Potential study sites are also displayed this way, and selected to cover the range in variables present in the region. The coverage of sites is assessed with the Quality Index, which compares the range and standard deviation of variables among the sites to that of the larger region, and prioritizes sites that are well-distributed (i.e. not clumped) in variable space. We illustrate the method with a case study examining relationships between agricultural land use, physiography and stream phosphorus (P) export, in which we selected several variables representing agricultural P inputs and landscape susceptibility to P loss. A geographic area of 110,000km2 was represented with 11 study sites with good coverage of four variables representing agricultural P inputs and transport mechanisms taken from commonly-available geospatial datasets. We use a genetic algorithm to select 11 sites with the highest possible QI and compare these, post-hoc, to our sites. This approach reduces subjectivity in site selection, considers practical constraints and easily allows for site reselection if necessary. This site selection approach can easily be adapted to different landscapes and study goals, as we provide an algorithm and computer code to reproduce our approach elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...