Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 076601, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142347

RESUMO

The dynamics of strongly correlated fermions following an external excitation reveals extremely rich collective quantum effects. Examples are fermionic atoms in optical lattices, electrons in correlated materials, and dense quantum plasmas. Presently, the only quantum-dynamics approach that rigorously describes these processes in two and three dimensions is the nonequilibrium Green functions (NEGF) method. However, NEGF simulations are computationally expensive due to their T^{3} scaling with the simulation duration T. Recently, T^{2} scaling was achieved with the generalized Kadanoff-Baym ansatz (GKBA), for second-order Born (SOA) selfenergies, which has substantially extended the scope of NEGF simulations. Here we demonstrate that GKBA-NEGF simulations can be performed with order T^{1} scaling, both for SOA and GW selfenergies, and point out the remarkable capabilities of this approach.

2.
Nano Lett ; 19(12): 9045-9050, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31735027

RESUMO

Finite graphene nanoribbon (GNR) heterostructures host intriguing topological in-gap states (Rizzo, D. J.; et al. Nature2018, 560, 204). These states may be localized either at the bulk edges or at the ends of the structure. Here we show that correlation effects (not included in previous density functional simulations) play a key role in these systems: they result in increased magnetic moments at the ribbon edges accompanied by a significant energy renormalization of the topological end states, even in the presence of a metallic substrate. Our computed results are in excellent agreement with the experiments. Furthermore, we discover a striking, novel mechanism that causes an energy splitting of the nonzero-energy topological end states for a weakly screened system. We predict that similar effects should be observable in other GNR heterostructures as well.

3.
Phys Rev Lett ; 121(26): 267602, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636139

RESUMO

Strongly correlated systems of fermions have a number of exciting collective properties. Among them, the creation of a lattice that is occupied by doublons, i.e., two quantum particles with opposite spins, offers interesting electronic properties. In the past a variety of methods have been proposed to control doublon formation, both, spatially and temporally. Here, a novel mechanism is proposed and verified by exact diagonalization and nonequilibrium Green functions simulations-fermionic doublon creation by the impact of energetic ions. We report the formation of a nonequilibrium steady state with homogeneous doublon distribution. The effect should be particularly important for strongly correlated finite systems, such as graphene nanoribbons, and directly observable with fermionic atoms in optical lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA