Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770208

RESUMO

In this work, roof felts are considered. Special attention is paid to the mechanical properties and self-healing (SH) phenomena under elevated temperatures. The results of the heating and strength tests for the entire range of material work, from the first load to sample breaking, are shown with respect to the angle of reinforcement relative to the longitudinal axis of the sample and different ways of breaking the continuity of the material. The influence that the material thickness and modifiers used for the production of the base material have on the obtained results was also pointed out. The meaningful SH strength is reported-from 5% up to 20% of the strength of the undamaged material-which, in perspective, can provide comprehensive knowledge of the optimal use of roofing felts and its proper mathematical modeling.

2.
Materials (Basel) ; 11(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438324

RESUMO

This paper presents a study of new two-dimensional composite structures with respect to their thermomechanical properties. The investigated structures are based on very well-known auxetic geometries-i.e., the anti-tetrachiral and re-entrant honeycomb-modified by additional linking elements, material which is highly sensitive to changes of temperature. The study shows that temperature can be used as a control parameter to tune the value of the effective Poisson's ratio, which allows, in turn, changing its value from positive to negative, according to the temperature applied. The study shows that such thermoauxetic behavior applies both to composites with voids and those completely filled with material.

3.
Materials (Basel) ; 10(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207571

RESUMO

This paper presents a finite-element analysis of honeycomb and re-entrant honeycomb structures made of a two-phase composite material which is optimized with respect to selected parameters. It is shown that some distributions of each phase in the composite material result in the counter-intuitive mechanical behaviour of the structures. In particular, negative values of effective Poisson's ratio, i.e., effective auxeticity, can be obtained for a hexagonal honeycomb, whereas re-entrant geometry can be characterized by positive values. Topology optimization by means of the method of moving asymptotes (MMA) and solid isotropic material with penalization (SIMP) was used to determine the materials' distributions.

4.
Materials (Basel) ; 10(12)2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29186882

RESUMO

A tubular composite structure that is built of two materials, characterized by different Young moduli, is analysed in this paper. The Young's modulus of one of these materials can be controlled by external conditions e.g., magnetic or electric field, temperature etc. The geometry of the reinforcement is based on typical auxetic re-entrant honeycomb cellular structure. The influence of this external factor on the behaviour of the stretched tube is analysed in this paper. Also, the possibility of creating a tubular composite structure whose cross-section is either shrinking or expanding, while stretching the tube is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...